These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 20675479)
1. Inclusion membrane proteins of Protochlamydia amoebophila UWE25 reveal a conserved mechanism for host cell interaction among the Chlamydiae. Heinz E; Rockey DD; Montanaro J; Aistleitner K; Wagner M; Horn M J Bacteriol; 2010 Oct; 192(19):5093-102. PubMed ID: 20675479 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of a novel porin family highlights a major difference in the outer membrane of chlamydial symbionts and pathogens. Aistleitner K; Heinz C; Hörmann A; Heinz E; Montanaro J; Schulz F; Maier E; Pichler P; Benz R; Horn M PLoS One; 2013; 8(1):e55010. PubMed ID: 23383036 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. Sixt BS; Heinz C; Pichler P; Heinz E; Montanaro J; Op den Camp HJ; Ammerer G; Mechtler K; Wagner M; Horn M Proteomics; 2011 May; 11(10):1868-92. PubMed ID: 21500343 [TBL] [Abstract][Full Text] [Related]
4. Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont. König L; Siegl A; Penz T; Haider S; Wentrup C; Polzin J; Mann E; Schmitz-Esser S; Domman D; Horn M mSystems; 2017; 2(3):. PubMed ID: 28593198 [TBL] [Abstract][Full Text] [Related]
5. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Haferkamp I; Schmitz-Esser S; Wagner M; Neigel N; Horn M; Neuhaus HE Mol Microbiol; 2006 Jun; 60(6):1534-45. PubMed ID: 16796686 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of the outer membrane of Protochlamydia amoebophila elementary bodies. Heinz E; Pichler P; Heinz C; Op den Camp HJ; Toenshoff ER; Ammerer G; Mechtler K; Wagner M; Horn M Proteomics; 2010 Dec; 10(24):4363-76. PubMed ID: 21136591 [TBL] [Abstract][Full Text] [Related]
7. 'Candidatus Protochlamydia amoebophila', an endosymbiont of Acanthamoeba spp. Collingro A; Toenshoff ER; Taylor MW; Fritsche TR; Wagner M; Horn M Int J Syst Evol Microbiol; 2005 Sep; 55(Pt 5):1863-1866. PubMed ID: 16166679 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the protein-coding gene content of Chlamydia trachomatis and Protochlamydia amoebophila using a Raspberry Pi computer. Robson JF; Barker D BMC Res Notes; 2015 Oct; 8():561. PubMed ID: 26462790 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive in silico prediction and analysis of chlamydial outer membrane proteins reflects evolution and life style of the Chlamydiae. Heinz E; Tischler P; Rattei T; Myers G; Wagner M; Horn M BMC Genomics; 2009 Dec; 10():634. PubMed ID: 20040079 [TBL] [Abstract][Full Text] [Related]
11. Protochlamydia phocaeensis sp. nov., a new Chlamydiales species with host dependent replication cycle. Bou Khalil JY; Benamar S; Di Pinto F; Blanc-Tailleur C; Raoult D; La Scola B Microbes Infect; 2017 Jun; 19(6):343-350. PubMed ID: 28279734 [TBL] [Abstract][Full Text] [Related]
12. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. Griffiths E; Ventresca MS; Gupta RS BMC Genomics; 2006 Jan; 7():14. PubMed ID: 16436211 [TBL] [Abstract][Full Text] [Related]
13. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561 [TBL] [Abstract][Full Text] [Related]
14. Acanthamoeba containing endosymbiotic chlamydia isolated from hospital environments and its potential role in inflammatory exacerbation. Fukumoto T; Matsuo J; Okubo T; Nakamura S; Miyamoto K; Oka K; Takahashi M; Akizawa K; Shibuya H; Shimizu C; Yamaguchi H BMC Microbiol; 2016 Dec; 16(1):292. PubMed ID: 27978822 [TBL] [Abstract][Full Text] [Related]
15. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Gauliard E; Ouellette SP; Rueden KJ; Ladant D Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440 [TBL] [Abstract][Full Text] [Related]
16. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Haferkamp I; Schmitz-Esser S; Linka N; Urbany C; Collingro A; Wagner M; Horn M; Neuhaus HE Nature; 2004 Dec; 432(7017):622-5. PubMed ID: 15577910 [TBL] [Abstract][Full Text] [Related]
17. Architecture and host interface of environmental chlamydiae revealed by electron cryotomography. Pilhofer M; Aistleitner K; Ladinsky MS; König L; Horn M; Jensen GJ Environ Microbiol; 2014 Feb; 16(2):417-29. PubMed ID: 24118768 [TBL] [Abstract][Full Text] [Related]
18. The chlamydial inclusion: escape from the endocytic pathway. Fields KA; Hackstadt T Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA. Fields KA; Fischer E; Hackstadt T Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525 [TBL] [Abstract][Full Text] [Related]
20. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. Delevoye C; Nilges M; Dautry-Varsat A; Subtil A J Biol Chem; 2004 Nov; 279(45):46896-906. PubMed ID: 15316015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]