These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Darkness inhibits autokinase activity of bacterial bathy phytochromes. Huber C; Strack M; Schultheiß I; Pielage J; Mechler X; Hornbogen J; Diller R; Frankenberg-Dinkel N J Biol Chem; 2024 Apr; 300(4):107148. PubMed ID: 38462162 [TBL] [Abstract][Full Text] [Related]
3. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Velázquez Escobar F; Buhrke D; Michael N; Sauthof L; Wilkening S; Tavraz NN; Salewski J; Frankenberg-Dinkel N; Mroginski MA; Scheerer P; Friedrich T; Siebert F; Hildebrandt P Photochem Photobiol; 2017 May; 93(3):724-732. PubMed ID: 28500706 [TBL] [Abstract][Full Text] [Related]
4. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr. Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118 [TBL] [Abstract][Full Text] [Related]
5. Photoinduced reaction mechanisms in prototypical and bathy phytochromes. López MF; Dahl M; Escobar FV; Bonomi HR; Kraskov A; Michael N; Mroginski MA; Scheerer P; Hildebrandt P Phys Chem Chem Phys; 2022 May; 24(19):11967-11978. PubMed ID: 35527718 [TBL] [Abstract][Full Text] [Related]
6. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes. Salewski J; Escobar FV; Kaminski S; von Stetten D; Keidel A; Rippers Y; Michael N; Scheerer P; Piwowarski P; Bartl F; Frankenberg-Dinkel N; Ringsdorf S; Gärtner W; Lamparter T; Mroginski MA; Hildebrandt P J Biol Chem; 2013 Jun; 288(23):16800-16814. PubMed ID: 23603902 [TBL] [Abstract][Full Text] [Related]
7. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
8. Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. Oberpichler I; Molina I; Neubauer O; Lamparter T FEBS Lett; 2006 Jan; 580(2):437-42. PubMed ID: 16378606 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Lamparter T; Michael N Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635 [TBL] [Abstract][Full Text] [Related]
10. Spectral properties of phytochrome Agp2 from Agrobacterium tumefaciens are specifically modified by a compound of the cell extract. Krieger A; Molina I; Oberpichler I; Michael N; Lamparter T J Photochem Photobiol B; 2008 Oct; 93(1):16-22. PubMed ID: 18693034 [TBL] [Abstract][Full Text] [Related]
11. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Lamparter T; Michael N; Mittmann F; Esteban B Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11628-33. PubMed ID: 12186972 [TBL] [Abstract][Full Text] [Related]
12. Temperature effects on Agrobacterium phytochrome Agp1. Njimona I; Lamparter T PLoS One; 2011; 6(10):e25977. PubMed ID: 22043299 [TBL] [Abstract][Full Text] [Related]
13. Dynamics and efficiency of photoswitching in biliverdin-binding phytochromes. Consiglieri E; Gutt A; Gärtner W; Schubert L; Viappiani C; Abbruzzetti S; Losi A Photochem Photobiol Sci; 2019 Oct; 18(10):2484-2496. PubMed ID: 31418445 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Kraskov A; Nguyen AD; Goerling J; Buhrke D; Velazquez Escobar F; Fernandez Lopez M; Michael N; Sauthof L; Schmidt A; Piwowarski P; Yang Y; Stensitzki T; Adam S; Bartl F; Schapiro I; Heyne K; Siebert F; Scheerer P; Mroginski MA; Hildebrandt P Biochemistry; 2020 Mar; 59(9):1023-1037. PubMed ID: 32073262 [TBL] [Abstract][Full Text] [Related]
15. Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Fernandez Lopez M; Nguyen AD; Velazquez Escobar F; González R; Michael N; Nogacz Ż; Piwowarski P; Bartl F; Siebert F; Heise I; Scheerer P; Gärtner W; Mroginski MA; Hildebrandt P Biochemistry; 2019 Aug; 58(33):3504-3519. PubMed ID: 31348653 [TBL] [Abstract][Full Text] [Related]
16. Analogies and Differences in the Photoactivation Mechanism of Bathy and Canonical Bacteriophytochromes Revealed by Multiscale Modeling. Salvadori G; Mennucci B J Phys Chem Lett; 2024 Aug; 15(31):8078-8084. PubMed ID: 39087732 [TBL] [Abstract][Full Text] [Related]
17. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. Lamparter T BMC Bioinformatics; 2006 Mar; 7():141. PubMed ID: 16539742 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Ulijasz AT; Cornilescu G; Cornilescu CC; Zhang J; Rivera M; Markley JL; Vierstra RD Nature; 2010 Jan; 463(7278):250-4. PubMed ID: 20075921 [TBL] [Abstract][Full Text] [Related]
19. Assembly of synthetic locked chromophores with agrobacterium phytochromes Agp1 and Agp2. Inomata K; Noack S; Hammam MA; Khawn H; Kinoshita H; Murata Y; Michael N; Scheerer P; Krauss N; Lamparter T J Biol Chem; 2006 Sep; 281(38):28162-73. PubMed ID: 16803878 [TBL] [Abstract][Full Text] [Related]
20. The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers. Nagano S; Scheerer P; Zubow K; Michael N; Inomata K; Lamparter T; Krauß N J Biol Chem; 2016 Sep; 291(39):20674-91. PubMed ID: 27466363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]