BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2067577)

  • 1. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607.
    Schiering N; Kabsch W; Moore MJ; Distefano MD; Walsh CT; Pai EF
    Nature; 1991 Jul; 352(6331):168-72. PubMed ID: 2067577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions.
    Ledwidge R; Patel B; Dong A; Fiedler D; Falkowski M; Zelikova J; Summers AO; Pai EF; Miller SM
    Biochemistry; 2005 Aug; 44(34):11402-16. PubMed ID: 16114877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent evolution of similar function in two structurally divergent enzymes.
    Kuriyan J; Krishna TS; Wong L; Guenther B; Pahler A; Williams CH; Model P
    Nature; 1991 Jul; 352(6331):172-4. PubMed ID: 2067578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin.
    Picaud T; Desbois A
    Biochemistry; 2006 Dec; 45(51):15829-37. PubMed ID: 17176105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase.
    Senda T; Yamada T; Sakurai N; Kubota M; Nishizaki T; Masai E; Fukuda M; Mitsuidagger Y
    J Mol Biol; 2000 Dec; 304(3):397-410. PubMed ID: 11090282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tyrosine residues in Hg(II) detoxification by mercuric reductase from Bacillus sp. strain RC607.
    Rennex D; Cummings RT; Pickett M; Walsh CT; Bradley M
    Biochemistry; 1993 Jul; 32(29):7475-8. PubMed ID: 8338845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon.
    Schue M; Glendinning KJ; Hobman JL; Brown NL
    Biometals; 2008 Apr; 21(2):107-16. PubMed ID: 17457514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase.
    Angelucci F; Miele AE; Boumis G; Dimastrogiovanni D; Brunori M; Bellelli A
    Proteins; 2008 Aug; 72(3):936-45. PubMed ID: 18300227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands.
    Engst S; Miller SM
    Biochemistry; 1999 Mar; 38(12):3519-29. PubMed ID: 10090738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health.
    Zeyaullah M; Nabi G; Malla R; Ali A
    Nepal Med Coll J; 2007 Sep; 9(3):182-5. PubMed ID: 18092437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury resistance in Sporosarcina sp. G3.
    Bafana A
    Biometals; 2011 Apr; 24(2):301-9. PubMed ID: 21181488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury.
    Dash HR; Sahu M; Mallick B; Das S
    Biochimie; 2017 Nov; 142():207-215. PubMed ID: 28966143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance.
    Wang Y; Moore M; Levinson HS; Silver S; Walsh C; Mahler I
    J Bacteriol; 1989 Jan; 171(1):83-92. PubMed ID: 2536669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal cysteines of Tn501 mercuric ion reductase.
    Moore MJ; Miller SM; Walsh CT
    Biochemistry; 1992 Feb; 31(6):1677-85. PubMed ID: 1531297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.