These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20675813)

  • 1. Cardiorespiratory responses to exercise in CHF: a conspiracy of maladaptation.
    Dempsey JA
    J Physiol; 2010 Aug; 588(Pt 15):2683. PubMed ID: 20675813
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of respiratory muscle work on blood flow distribution during exercise in heart failure.
    Olson TP; Joyner MJ; Dietz NM; Eisenach JH; Curry TB; Johnson BD
    J Physiol; 2010 Jul; 588(Pt 13):2487-501. PubMed ID: 20457736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass.
    Calbet JA; Rådegran G; Boushel R; Saltin B
    J Physiol; 2009 Jan; 587(2):477-90. PubMed ID: 19047206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle hypoperfusion during recovery from maximal supine bicycle exercise in patients with heart failure.
    Sumimoto T; Kaida M; Yuasa F; Hattori T; Jikuhara T; Hikosaka M; Motohiro M; Sugiura T; Iwasaka T
    Am J Cardiol; 1996 Oct; 78(7):841-4. PubMed ID: 8857497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory muscle work influences locomotor convective and diffusive oxygen transport in human heart failure during exercise.
    Smith JR; Berg JD; Curry TB; Joyner MJ; Olson TP
    Physiol Rep; 2020 Jun; 8(12):e14484. PubMed ID: 32562374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cardiac output response in blood flow distribution during exercise in patients with chronic heart failure.
    Yamabe H; Itoh K; Yasaka Y; Takata T; Yokoyama M
    Eur Heart J; 1995 Jul; 16(7):951-60. PubMed ID: 7498211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training.
    Duscha BD; Schulze PC; Robbins JL; Forman DE
    Heart Fail Rev; 2008 Feb; 13(1):21-37. PubMed ID: 17955365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory muscle strength and hemodynamics in chronic heart failure.
    Nishimura Y; Maeda H; Tanaka K; Nakamura H; Hashimoto Y; Yokoyama M
    Chest; 1994 Feb; 105(2):355-9. PubMed ID: 8306727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between cardiac output kinetics and skeletal muscle oxygenation during moderate exercise in moderately impaired patients with chronic heart failure.
    Spee RF; Niemeijer VM; Schoots T; Wijn PF; Doevendans PA; Kemps HM
    J Appl Physiol (1985); 2016 Jul; 121(1):198-204. PubMed ID: 27283909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic regulation of leg vasomotor tone in patients with chronic heart failure.
    Sullivan MJ; Cobb FR
    J Appl Physiol (1985); 1991 Sep; 71(3):1070-5. PubMed ID: 1757302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of skeletal muscle demand on cardiovascular function.
    Harms CA
    Med Sci Sports Exerc; 2000 Jan; 32(1):94-9. PubMed ID: 10647535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulse contour analysis to assess hemodynamic response to passive leg raising.
    Geerts B; de Wilde R; Aarts L; Jansen J
    J Cardiothorac Vasc Anesth; 2011 Feb; 25(1):48-52. PubMed ID: 21093293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ; Romer LM
    J Appl Physiol (1985); 2008 May; 104(5):1442-51. PubMed ID: 18323465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure.
    Sullivan MJ; Knight JD; Higginbotham MB; Cobb FR
    Circulation; 1989 Oct; 80(4):769-81. PubMed ID: 2791242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise.
    Calbet JA; González-Alonso J; Helge JW; Søndergaard H; Munch-Andersen T; Saltin B; Boushel R
    Scand J Med Sci Sports; 2015 Dec; 25 Suppl 4():144-57. PubMed ID: 26589128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in mouth occlusion pressure and breathing pattern between arm and leg incremental exercise.
    Ramonatxo M; Prioux J; Prefaut C
    Acta Physiol Scand; 1996 Dec; 158(4):333-41. PubMed ID: 8971254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are the arms and legs in competition for cardiac output?
    Secher NH; Volianitis S
    Med Sci Sports Exerc; 2006 Oct; 38(10):1797-803. PubMed ID: 17019302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure.
    Chiappa GR; Roseguini BT; Vieira PJ; Alves CN; Tavares A; Winkelmann ER; Ferlin EL; Stein R; Ribeiro JP
    J Am Coll Cardiol; 2008 Apr; 51(17):1663-71. PubMed ID: 18436118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg blood flow and increased potassium release during exercise in chronic heart failure: effect of physical training.
    Barlow CW; Davey PP; Qayyum MS; Conway J; Paterson DJ; Robbins PA
    J Card Fail; 1998 Jun; 4(2):105-14. PubMed ID: 9730103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular consequences of exercise hyperpnea.
    Harms CA; Dempsey JA
    Exerc Sport Sci Rev; 1999; 27():37-62. PubMed ID: 10791013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.