BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 20675907)

  • 1. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell aggregation and blood viscosity in an isolated heart preparation.
    Charansonney O; Mouren S; Dufaux J; Duvelleroy M; Vicaut E
    Biorheology; 1993; 30(1):75-84. PubMed ID: 7690613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.
    Yalcin O; Ulker P; Yavuzer U; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2098-105. PubMed ID: 18326799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of human RBC in binary dextran-PEG polymer mixtures.
    Neu B; Armstrong JK; Fisher TC; Meiselman HJ
    Biorheology; 2001; 38(1):53-68. PubMed ID: 11381165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress.
    Kameneva MV; Repko BM; Krasik EF; Perricelli BC; Borovetz HS
    ASAIO J; 2003; 49(5):537-42. PubMed ID: 14524560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of red blood cell aggregation on perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 27647727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic depletion decreases the aggregability of erythrocytes.
    Reinhart WH; Schulzki T
    Clin Hemorheol Microcirc; 2011; 49(1-4):451-61. PubMed ID: 22214716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of electrorheological properties of blood.
    Antonova N; Riha P
    Clin Hemorheol Microcirc; 2006; 35(1-2):19-29. PubMed ID: 16899902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.
    Pribush A; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):518-25. PubMed ID: 21036560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of N-methyl D-aspartate (NMDA) receptors has no influence on rheological properties of erythrocytes.
    Reinhart WH; Geissmann-Ott C; Bogdanova A
    Clin Hemorheol Microcirc; 2011; 49(1-4):307-13. PubMed ID: 22214702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of red blood cell aggregation by admittance measurements.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 1996; 33(2):139-51. PubMed ID: 8679961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.