These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20676441)

  • 1. A porous LiFePO4 and carbon nanotube composite.
    Zhou Y; Wang J; Hu Y; O'Hayre R; Shao Z
    Chem Commun (Camb); 2010 Oct; 46(38):7151-3. PubMed ID: 20676441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries.
    Toprakci O; Toprakci HA; Ji L; Xu G; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1273-80. PubMed ID: 22301674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of graphene embedded LiFePO₄ using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries.
    Kim W; Ryu W; Han D; Lim S; Eom J; Kwon H
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4731-6. PubMed ID: 24621267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LiFePO4 mesocrystals for lithium-ion batteries.
    Popovic J; Demir-Cakan R; Tornow J; Morcrette M; Su DS; Schlögl R; Antonietti M; Titirici MM
    Small; 2011 Apr; 7(8):1127-35. PubMed ID: 21449048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance.
    Asfaw HD; Roberts MR; Tai CW; Younesi R; Valvo M; Nyholm L; Edström K
    Nanoscale; 2014 Aug; 6(15):8804-13. PubMed ID: 24954747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode.
    Sun C; Rajasekhara S; Goodenough JB; Zhou F
    J Am Chem Soc; 2011 Feb; 133(7):2132-5. PubMed ID: 21268579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries.
    DiLeo RA; Castiglia A; Ganter MJ; Rogers RE; Cress CD; Raffaelle RP; Landi BJ
    ACS Nano; 2010 Oct; 4(10):6121-31. PubMed ID: 20857949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries.
    Su YS; Fu Y; Manthiram A
    Phys Chem Chem Phys; 2012 Nov; 14(42):14495-9. PubMed ID: 23033056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries.
    Li X; Cheng F; Guo B; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14017-24. PubMed ID: 16852760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries.
    Lee JH; Kim JS; Kim YC; Zang DS; Paik U
    Ultramicroscopy; 2008 Sep; 108(10):1256-9. PubMed ID: 18550285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications.
    Venkatachalam S; Zhu H; Masarapu C; Hung K; Liu Z; Suenaga K; Wei B
    ACS Nano; 2009 Aug; 3(8):2177-84. PubMed ID: 19637892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: a case study on iron fluoride nanoparticles.
    Li C; Gu L; Tong J; Maier J
    ACS Nano; 2011 Apr; 5(4):2930-8. PubMed ID: 21375268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4.
    Sharma N; Guo X; Du G; Guo Z; Wang J; Wang Z; Peterson VK
    J Am Chem Soc; 2012 May; 134(18):7867-73. PubMed ID: 22482702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Sol-Gel-synthesized LiFePO4 by multiple scattering XAFS.
    Giorgetti M; Berrettoni M; Scaccia S; Passerini S
    Inorg Chem; 2006 Mar; 45(6):2750-7. PubMed ID: 16529500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode.
    Salimi A; Compton RG; Hallaj R
    Anal Biochem; 2004 Oct; 333(1):49-56. PubMed ID: 15351279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors.
    Liu R; Duay J; Lane T; Bok Lee S
    Phys Chem Chem Phys; 2010 May; 12(17):4309-16. PubMed ID: 20407700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular wiring of insulators: charging and discharging electrode materials for high-energy lithium-ion batteries by molecular charge transport layers.
    Wang Q; Evans N; Zakeeruddin SM; Exnar I; Grätzel M
    J Am Chem Soc; 2007 Mar; 129(11):3163-7. PubMed ID: 17326635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.