These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
480 related articles for article (PubMed ID: 20676631)
21. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Shenton D; Grant CM Biochem J; 2003 Sep; 374(Pt 2):513-9. PubMed ID: 12755685 [TBL] [Abstract][Full Text] [Related]
22. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores. Otani M; Ihara N; Umezawa C; Sano K J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833 [TBL] [Abstract][Full Text] [Related]
23. [Dehydrogenases of the pentose cycle in rat liver peroxisomes]. Antonenkov VD; Panchenko LF Biokhimiia; 1984 Jul; 49(7):1159-65. PubMed ID: 6477984 [TBL] [Abstract][Full Text] [Related]
24. [Effects of prostaglandin F 2 alpha on the activity of NADP-dependent dehydrogenases]. Kudriavtseva GV; Tsarenko EP Biokhimiia; 1980 Apr; 45(4):594-600. PubMed ID: 7189671 [TBL] [Abstract][Full Text] [Related]
25. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Zhao J; Baba T; Mori H; Shimizu K Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115 [TBL] [Abstract][Full Text] [Related]
26. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Krajewski V; Simic P; Mouncey NJ; Bringer S; Sahm H; Bott M Appl Environ Microbiol; 2010 Jul; 76(13):4369-76. PubMed ID: 20453146 [TBL] [Abstract][Full Text] [Related]
27. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes. Antonenkov VD Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047 [TBL] [Abstract][Full Text] [Related]
28. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M; Herrmann U; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953 [TBL] [Abstract][Full Text] [Related]
29. [Effect of series E and F prostaglandins on the reaction of the pentosephosphate pathway of carbohydrate metabolism in isolated perfused rat organs]. Kudriavtseva GV; Makarov SA; Sekretareva EV Biokhimiia; 1984 Nov; 49(11):1847-53. PubMed ID: 6596960 [TBL] [Abstract][Full Text] [Related]
30. Gluconate as suitable potential reduction supplier in Corynebacterium glutamicum: cloning and expression of gntP and gntK in Escherichia coli. Porco A; Gamero EE; Mylonás E; Istúriz T Biol Res; 2008; 41(3):349-58. PubMed ID: 19399347 [TBL] [Abstract][Full Text] [Related]
31. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
32. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Moritz B; Striegel K; De Graaf AA; Sahm H Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959 [TBL] [Abstract][Full Text] [Related]
33. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes. Meyer M; Schweiger P; Deppenmeier U Appl Microbiol Biotechnol; 2015 May; 99(9):3929-39. PubMed ID: 25425279 [TBL] [Abstract][Full Text] [Related]
34. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae. Sinha A; Maitra PK J Gen Microbiol; 1992 Sep; 138(9):1865-73. PubMed ID: 1328471 [TBL] [Abstract][Full Text] [Related]
35. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Chin JW; Cirino PC Biotechnol Prog; 2011; 27(2):333-41. PubMed ID: 21344680 [TBL] [Abstract][Full Text] [Related]
36. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Sahm H; Eggeling L; de Graaf AA Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021 [TBL] [Abstract][Full Text] [Related]
37. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. del Castillo T; Ramos JL; Rodríguez-Herva JJ; Fuhrer T; Sauer U; Duque E J Bacteriol; 2007 Jul; 189(14):5142-52. PubMed ID: 17483213 [TBL] [Abstract][Full Text] [Related]
38. Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans. Shi L; Li K; Zhang H; Liu X; Lin J; Wei D J Biotechnol; 2014 Apr; 175():69-74. PubMed ID: 24530540 [TBL] [Abstract][Full Text] [Related]
39. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967 [TBL] [Abstract][Full Text] [Related]
40. [Cytochemical research on cysts of the sarcosporidian Sarcocystis bovicanis. II. Oxidation-reduction enzymes]. Metsis AL Tsitologiia; 1988 Jul; 30(7):882-7. PubMed ID: 3142126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]