These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20676732)

  • 1. Mathematical modeling in wound healing, bone regeneration and tissue engineering.
    Geris L; Gerisch A; Schugart RC
    Acta Biotheor; 2010 Dec; 58(4):355-67. PubMed ID: 20676732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The early fracture hematoma and its potential role in fracture healing.
    Kolar P; Schmidt-Bleek K; Schell H; Gaber T; Toben D; Schmidmaier G; Perka C; Buttgereit F; Duda GN
    Tissue Eng Part B Rev; 2010 Aug; 16(4):427-34. PubMed ID: 20196645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair and regeneration of osteochondral defects in the articular joints.
    Swieszkowski W; Tuan BH; Kurzydlowski KJ; Hutmacher DW
    Biomol Eng; 2007 Nov; 24(5):489-95. PubMed ID: 17931965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffold-based bone engineering by using genetically modified cells.
    Hutmacher DW; Garcia AJ
    Gene; 2005 Feb; 347(1):1-10. PubMed ID: 15777645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities.
    Chen FM; Jin Y
    Tissue Eng Part B Rev; 2010 Apr; 16(2):219-55. PubMed ID: 19860551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico design of treatment strategies in wound healing and bone fracture healing.
    Geris L; Schugart R; Van Oosterwyck H
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2683-706. PubMed ID: 20439269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-based tissue engineering in bone and cartilage repair.
    Wozney JM; Seeherman HJ
    Curr Opin Biotechnol; 2004 Oct; 15(5):392-8. PubMed ID: 15464367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition.
    Kobayashi M; Spector M
    Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dermal templates and the wound-healing paradigm: the promise of tissue regeneration.
    Simpson DG
    Expert Rev Med Devices; 2006 Jul; 3(4):471-84. PubMed ID: 16866644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diamond concept--open questions.
    Giannoudis PV; Einhorn TA; Schmidmaier G; Marsh D
    Injury; 2008 Sep; 39 Suppl 2():S5-8. PubMed ID: 18804574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine.
    Muschler GF; Raut VP; Patterson TE; Wenke JC; Hollinger JO
    Tissue Eng Part B Rev; 2010 Feb; 16(1):123-45. PubMed ID: 19891542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noggin improves bone healing elicited by muscle stem cells expressing inducible BMP4.
    Peng H; Usas A; Hannallah D; Olshanski A; Cooper GM; Huard J
    Mol Ther; 2005 Aug; 12(2):239-46. PubMed ID: 16043095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenesis in bone fracture healing: a bioregulatory model.
    Geris L; Gerisch A; Sloten JV; Weiner R; Oosterwyck HV
    J Theor Biol; 2008 Mar; 251(1):137-58. PubMed ID: 18155732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of endogenous regenerative technology for in situ regenerative medicine.
    Anitua E; Sánchez M; Orive G
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):741-52. PubMed ID: 20102730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis.
    Olsen L; Sherratt JA; Maini PK; Arnold F
    IMA J Math Appl Med Biol; 1997 Dec; 14(4):261-81. PubMed ID: 9415995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the role of stem cells in cutaneous wound healing.
    Lau K; Paus R; Tiede S; Day P; Bayat A
    Exp Dermatol; 2009 Nov; 18(11):921-33. PubMed ID: 19719838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of tissue differentiation in a scaffold as a function of porosity, Young's modulus and dissolution rate: application of mechanobiological models in tissue engineering.
    Byrne DP; Lacroix D; Planell JA; Kelly DJ; Prendergast PJ
    Biomaterials; 2007 Dec; 28(36):5544-54. PubMed ID: 17897712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the modelling bone tissue fracture and healing of the bone tissue.
    Doblaré M; García JM
    Acta Cient Venez; 2003; 54(1):58-75. PubMed ID: 14515768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.