BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 20677201)

  • 1. Significantly enhanced DNA thermal stability resulting from porphyrin H-aggregate formation in the minor groove of the duplex.
    Stephenson AW; Bomholt N; Partridge AC; Filichev VV
    Chembiochem; 2010 Sep; 11(13):1833-9. PubMed ID: 20677201
    [No Abstract]   [Full Text] [Related]  

  • 2. Diastereochemically controlled porphyrin dimer formation on a DNA duplex scaffold.
    Endo M; Fujitsuka M; Majima T
    J Org Chem; 2008 Feb; 73(3):1106-12. PubMed ID: 18184013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular helical porphyrin arrays using DNA as a scaffold.
    Bouamaied I; Nguyen T; Rühl T; Stulz E
    Org Biomol Chem; 2008 Nov; 6(21):3888-91. PubMed ID: 18931790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplex stabilization and energy transfer in zipper porphyrin-DNA.
    Nguyen T; Brewer A; Stulz E
    Angew Chem Int Ed Engl; 2009; 48(11):1974-7. PubMed ID: 19189358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing structural flexibility into porphyrin-DNA zipper arrays.
    Brewer A; Siligardi G; Neylon C; Stulz E
    Org Biomol Chem; 2011 Feb; 9(3):777-82. PubMed ID: 21103551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) tethering a Hoechst 33258 analogue: triplex and duplex stabilization by simultaneous minor groove binding.
    Reddy PM; Bruice TC
    J Am Chem Soc; 2004 Mar; 126(12):3736-47. PubMed ID: 15038726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA duplex-based, tailor-made fluorescent sensor for porphyrin derivatives.
    Fujimoto K; Muto Y; Inouye M
    Bioconjug Chem; 2008 Jun; 19(6):1132-4. PubMed ID: 18465890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sharp melting transitions in DNA hybrids without aggregate dissolution: proof of neighboring-duplex cooperativity.
    Gibbs-Davis JM; Schatz GC; Nguyen ST
    J Am Chem Soc; 2007 Dec; 129(50):15535-40. PubMed ID: 18027938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical arrangement of porphyrins along DNA: towards photoactive DNA-based nanoarchitectures.
    Wagenknecht HA
    Angew Chem Int Ed Engl; 2009; 48(16):2838-41. PubMed ID: 19259998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of 2'-fluorine substitutions on DNA i-motif conformation and stability.
    Fenna CP; Wilkinson VJ; Arnold JR; Cosstick R; Fisher J
    Chem Commun (Camb); 2008 Aug; (30):3567-9. PubMed ID: 18654715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A-tract DNA disfavours triplex formation.
    Sandström K; Wärmländer S; Gräslund A; Leijon M
    J Mol Biol; 2002 Jan; 315(4):737-48. PubMed ID: 11812143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of DNA-porphyrin interactions.
    Nitta Y; Kuroda R
    Biopolymers; 2006 Apr; 81(5):376-91. PubMed ID: 16358258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint molecular modeling and spectroscopic studies of DNA complexes of a bis(arginyl) conjugate of a tricationic porphyrin designed to target the major groove.
    Mohammadi S; Perrée-Fauvet M; Gresh N; Hillairet K; Taillandier E
    Biochemistry; 1998 Apr; 37(17):6165-78. PubMed ID: 9558356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A porphyrin C-nucleoside incorporated into DNA.
    Morales-Rojas H; Kool ET
    Org Lett; 2002 Dec; 4(25):4377-80. PubMed ID: 12465891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale.
    Fendt LA; Bouamaied I; Thöni S; Amiot N; Stulz E
    J Am Chem Soc; 2007 Dec; 129(49):15319-29. PubMed ID: 18004855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of a porphyrin conjugate of Hoechst 33258 to DNA. I. UV-visible and melting studies detect multiple binding modes to a 12-mer nonself-complementary duplex.
    Frau S; Bichenkova EV; Fedorova OS; Lokhov S; Douglas KT
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(1-2):131-43. PubMed ID: 11303559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin to an AT-rich region of a duplex DNA.
    Ohyama T; Mita H; Yamamoto Y
    Biophys Chem; 2005 Jan; 113(1):53-9. PubMed ID: 15617810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures, spectra, and DNA-binding properties of mixed ligand copper(II) complexes of iminodiacetic acid: the novel role of diimine co-ligands on DNA conformation and hydrolytic and oxidative double strand DNA cleavage.
    Selvakumar B; Rajendiran V; Uma Maheswari P; Stoeckli-Evans H; Palaniandavar M
    J Inorg Biochem; 2006 Mar; 100(3):316-30. PubMed ID: 16406550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of intercalator binding on DNA triplex stability: correlation with effects on A-tract duplex structure.
    Sandström K; Wärmländer S; Bergman J; Engqvist R; Leijon M; Gräslund A
    J Mol Recognit; 2004; 17(4):277-85. PubMed ID: 15227636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-surfactant interactions: coupled cooperativity in ligand binding leads to duplex stabilization.
    Pattarkine MV; Ganesh KN
    Biochem Biophys Res Commun; 1999 Sep; 263(1):41-6. PubMed ID: 10486250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.