These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20677205)

  • 1. Computational comparison of the reactions of substituted amines with CO(2).
    Mindrup EM; Schneider WF
    ChemSusChem; 2010 Aug; 3(8):931-8. PubMed ID: 20677205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward rational design of amines for CO2 capture: Substituent effect on kinetic process for the reaction of monoethanolamine with CO2.
    Xie H; Wang P; He N; Yang X; Chen J
    J Environ Sci (China); 2015 Nov; 37():75-82. PubMed ID: 26574090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2013 Jan; 47(2):1163-9. PubMed ID: 23190202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring metal-organic frameworks for CO2 capture: the amino effect.
    Vitillo JG; Savonnet M; Ricchiardi G; Bordiga S
    ChemSusChem; 2011 Sep; 4(9):1281-90. PubMed ID: 21922680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward rational design of amine solutions for PCC applications: the kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    Environ Sci Technol; 2012 Jul; 46(13):7422-9. PubMed ID: 22620675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent effect on the interaction of aromatic primary amines and diamines with supercritical CO(2) from infrared spectroscopy and quantum calculations.
    Farbos B; Tassaing T
    Phys Chem Chem Phys; 2009 Jul; 11(25):5052-61. PubMed ID: 19562135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the heats of reaction of substituted monoethanolamine with CO2.
    Xie HB; Johnson JK; Perry RJ; Genovese S; Wood BR
    J Phys Chem A; 2011 Jan; 115(3):342-50. PubMed ID: 21174422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleophilicity and accessibility calculations of alkanolamines: applications to carbon dioxide absorption reactions.
    Jhon YH; Shim JG; Kim JH; Lee JH; Jang KR; Kim J
    J Phys Chem A; 2010 Dec; 114(49):12907-13. PubMed ID: 21080721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of amine surface density in carbon dioxide adsorption on functionalized mixed oxide surfaces.
    Young PD; Notestein JM
    ChemSusChem; 2011 Nov; 4(11):1671-8. PubMed ID: 21957034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO(2) adsorption on supported molecular amidine systems on activated carbon.
    Alesi WR; Gray M; Kitchin JR
    ChemSusChem; 2010 Aug; 3(8):948-56. PubMed ID: 20730982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction energies of CO2·amine complexes: effects of amine substituents.
    Jorgensen KR; Cundari TR; Wilson AK
    J Phys Chem A; 2012 Oct; 116(42):10403-11. PubMed ID: 23016621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-base chemistry at the ice surface: reverse correlation between intrinsic basicity and proton-transfer efficiency to ammonia and methyl amines.
    Park SC; Kim JK; Lee CW; Moon ES; Kang H
    Chemphyschem; 2007 Dec; 8(17):2520-5. PubMed ID: 17948323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentations of protonated arginine, lysine and their methylated derivatives: concomitant losses of carbon monoxide or carbon dioxide and an amine.
    Shek PY; Zhao J; Ke Y; Siu KW; Hopkinson AC
    J Phys Chem A; 2006 Jul; 110(27):8282-96. PubMed ID: 16821812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines.
    Robinson K; McCluskey A; Attalla MI
    Chemphyschem; 2011 Apr; 12(6):1088-99. PubMed ID: 21472963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture.
    Mac Dowell N; Pereira FE; Llovell F; Blas FJ; Adjiman CS; Jackson G; Galindo A
    J Phys Chem B; 2011 Jun; 115(25):8155-68. PubMed ID: 21634388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide.
    Mohammed FS; Kitchens CL
    Molecules; 2015 Dec; 21(1):E24. PubMed ID: 26703563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO(2) capture.
    Tanthana J; Chuang SS
    ChemSusChem; 2010 Aug; 3(8):957-64. PubMed ID: 20715287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton exchanges between phenols and ammonia or amines: a computational study.
    Lu YX; Zou JW; Jin ZM; Wang YH; Zhang HX; Jiang YJ; Yu QS
    J Phys Chem A; 2006 Jul; 110(29):9261-6. PubMed ID: 16854042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of the reactions of carbamoyl phosphate.
    Alberty RA
    Arch Biochem Biophys; 2006 Jul; 451(1):17-22. PubMed ID: 16684500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.
    Didas SA; Kulkarni AR; Sholl DS; Jones CW
    ChemSusChem; 2012 Oct; 5(10):2058-64. PubMed ID: 22764080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.