BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20677219)

  • 1. Gender differences in β-adrenoceptor system in cardiac hypertrophy due to arteriovenous fistula.
    Dent MR; Tappia PS; Dhalla NS
    J Cell Physiol; 2011 Jan; 226(1):181-6. PubMed ID: 20677219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender related alterations of β-adrenoceptor mechanisms in heart failure due to arteriovenous fistula.
    Dent MR; Tappia PS; Dhalla NS
    J Cell Physiol; 2012 Aug; 227(8):3080-7. PubMed ID: 22015551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender differences in cardiac dysfunction and remodeling due to volume overload.
    Dent MR; Tappia PS; Dhalla NS
    J Card Fail; 2010 May; 16(5):439-49. PubMed ID: 20447581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume overload cardiac hypertrophy exhibits decreased expression of g(s)alpha and not of g(i)alpha in heart.
    Di Fusco F; Hashim S; Anand-Srivastava MB
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C990-8. PubMed ID: 11003579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic receptor trafficking by exercise in rat adipocytes: roles of G-protein-coupled receptor kinase-2, beta-arrestin-2, and the ubiquitin-proteasome pathway.
    Ogasawara J; Sanpei M; Rahman N; Sakurai T; Kizaki T; Hitomi Y; Ohno H; Izawa T
    FASEB J; 2006 Feb; 20(2):350-2. PubMed ID: 16368719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac beta-adrenergic signaling pathway alteration in isoproterenol-induced cardiac hypertrophy in male Sprague-Dawley rats.
    Hakamata N; Hamada H; Ohsuzu F; Nakamura H
    Jpn Heart J; 1997 Nov; 38(6):849-57. PubMed ID: 9486938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat.
    Wang X; Ren B; Liu S; Sentex E; Tappia PS; Dhalla NS
    J Appl Physiol (1985); 2003 Feb; 94(2):752-63. PubMed ID: 12531914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial beta-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion.
    Hammond HK; Roth DA; Insel PA; Ford CE; White FC; Maisel AS; Ziegler MG; Bloor CM
    Circulation; 1992 Jan; 85(1):269-80. PubMed ID: 1309445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex.
    Hejnova L; Skrabalova J; Novotny J
    J Mol Neurosci; 2017 Dec; 63(3-4):364-376. PubMed ID: 29081032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender differences in apoptotic signaling in heart failure due to volume overload.
    Dent MR; Tappia PS; Dhalla NS
    Apoptosis; 2010 Apr; 15(4):499-510. PubMed ID: 20041302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.
    Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G
    J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of lymphocyte beta 2-adrenoceptor signalling in patients with left ventricular volume overload disease.
    Dzimiri N; Basco C; Moorji A; Afrane B; Al-Halees Z
    Clin Exp Pharmacol Physiol; 2002 Mar; 29(3):181-8. PubMed ID: 11906480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desensitization of cardiac beta-adrenoceptor signaling with heart failure produced by myocardial infarction in the rat. Evidence for the role of Gi but not Gs or phosphorylating proteins.
    Kompa AR; Gu XH; Evans BA; Summers RJ
    J Mol Cell Cardiol; 1999 Jun; 31(6):1185-201. PubMed ID: 10371694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of adenylyl cyclase and G proteins in aortocaval shunt-induced heart failure.
    Wang X; Sentex E; Chapman D; Dhalla NS
    Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H118-25. PubMed ID: 14962838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of changes in beta-adrenoceptor signal transduction on type and stage of cardiac hypertrophy.
    Sethi R; Saini HK; Guo X; Wang X; Elimban V; Dhalla NS
    J Appl Physiol (1985); 2007 Mar; 102(3):978-84. PubMed ID: 17122376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytosis machinery is required for beta1-adrenergic receptor-induced hypertrophy in neonatal rat cardiac myocytes.
    Morisco C; Marrone C; Galeotti J; Shao D; Vatner DE; Vatner SF; Sadoshima J
    Cardiovasc Res; 2008 Apr; 78(1):36-44. PubMed ID: 18194989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Losartan attenuates phospholipase C isozyme gene expression in hypertrophied hearts due to volume overload.
    Dent MR; Aroutiounova N; Dhalla NS; Tappia PS
    J Cell Mol Med; 2006; 10(2):470-9. PubMed ID: 16796812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.
    Vidal M; Wieland T; Lohse MJ; Lorenz K
    Cardiovasc Res; 2012 Nov; 96(2):255-64. PubMed ID: 22843704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia/ischemia modulates G protein-coupled receptor kinase 2 and beta-arrestin-1 levels in the neonatal rat brain.
    Lombardi MS; van den Tweel E; Kavelaars A; Groenendaal F; van Bel F; Heijnen CJ
    Stroke; 2004 Apr; 35(4):981-6. PubMed ID: 15017017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of quinapril, losartan and hydralazine on cardiac hypertrophy and beta-adrenergic neuroeffector mechanisms in transgenic (mREN2)27 rats.
    Zolk O; Flesch M; Schnabel P; Teisman AC; Pinto YM; van Gilst WH; Paul M; Böhm M
    Br J Pharmacol; 1998 Feb; 123(3):405-12. PubMed ID: 9504380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.