These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20677735)

  • 21. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies.
    Wen Y; McLaughlin CK; Lo PK; Yang H; Sleiman HF
    Bioconjug Chem; 2010 Aug; 21(8):1413-6. PubMed ID: 20666441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay.
    Lee W; Oh BK; Kim YW; Choi JW
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3521-5. PubMed ID: 17252803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains.
    Huang X; Zhou X; Wu S; Wei Y; Qi X; Zhang J; Boey F; Zhang H
    Small; 2010 Feb; 6(4):513-6. PubMed ID: 20077425
    [No Abstract]   [Full Text] [Related]  

  • 24. Sunlight mediated disruption of peptide-based soft structures decorated with gold nanoparticles.
    Barman AK; Verma S
    Chem Commun (Camb); 2010 Oct; 46(37):6992-4. PubMed ID: 20730237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiol-induced assembly of Au nanoparticles into chainlike structures and their fixing by encapsulation in silica shells or gelatin microspheres.
    Cho EC; Choi SW; Camargo PH; Xia Y
    Langmuir; 2010 Jun; 26(12):10005-12. PubMed ID: 20218552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrically conducting nanopatterns formed by chemical e-beam lithography via gold nanoparticle seeds.
    Schaal PA; Besmehn A; Maynicke E; Noyong M; Beschoten B; Simon U
    Langmuir; 2012 Feb; 28(5):2448-54. PubMed ID: 22201225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled assembly of gold nanoparticles and graphene oxide sheets on dip pen nanolithography-generated templates.
    Li B; Lu G; Zhou X; Cao X; Boey F; Zhang H
    Langmuir; 2009 Sep; 25(18):10455-8. PubMed ID: 19689100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiol-specific and nonspecific interactions between DNA and gold nanoparticles.
    Cárdenas M; Barauskas J; Schillén K; Brennan JL; Brust M; Nylander T
    Langmuir; 2006 Mar; 22(7):3294-9. PubMed ID: 16548591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts.
    Conte M; Miyamura H; Kobayashi S; Chechik V
    J Am Chem Soc; 2009 May; 131(20):7189-96. PubMed ID: 19405535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radical intermediates in chloroform reactions over triphenylphosphine-protected Au nanoparticles.
    Conte M; Wilson K; Chechik V
    Org Biomol Chem; 2009 Apr; 7(7):1361-7. PubMed ID: 19300821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability of binary SAMs formed by omega-acid and alcohol functionalized thiol mixtures.
    Tielens F; Humblot V; Pradier CM; Calatayud M; Illas F
    Langmuir; 2009 Sep; 25(17):9980-5. PubMed ID: 19630387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced acyl radical formation in the Au nanoparticle-catalysed aldehyde oxidation.
    Conte M; Miyamura H; Kobayashi S; Chechik V
    Chem Commun (Camb); 2010 Jan; 46(1):145-7. PubMed ID: 20024321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of carbon monoxide with Au(111) modified by ion bombardment: a surface spectroscopy study under elevated pressure.
    Pászti Z; Hakkel O; Keszthelyi T; Berkó A; Balázs N; Bakó I; Guczi L
    Langmuir; 2010 Nov; 26(21):16312-24. PubMed ID: 20973580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monofunctional gold nanoparticles prepared via a noncovalent-interaction-based solid-phase modification approach.
    Liu X; Worden JG; Dai Q; Zou J; Wang J; Huo Q
    Small; 2006 Oct; 2(10):1126-9. PubMed ID: 17193575
    [No Abstract]   [Full Text] [Related]  

  • 36. Development of a semiempirical potential for simulations of thiol-gold interfaces. Application to thiol-protected gold nanoparticles.
    Olmos-Asar JA; Rapallo A; Mariscal MM
    Phys Chem Chem Phys; 2011 Apr; 13(14):6500-6. PubMed ID: 21387045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide-mediated size fractionation of gold nanoparticles in aqueous solutions.
    Zhao W; Lin L; Hsing IM
    Langmuir; 2010 May; 26(10):7405-9. PubMed ID: 20180584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode.
    Kannan P; John SA
    Anal Chim Acta; 2010 Mar; 663(2):158-64. PubMed ID: 20206005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly.
    Lu M; Li XH; Yu BZ; Li HL
    J Colloid Interface Sci; 2002 Apr; 248(2):376-82. PubMed ID: 16290541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacture of stable palladium and gold nanoparticles on native and genetically engineered flagella scaffolds.
    Deplanche K; Woods RD; Mikheenko IP; Sockett RE; Macaskie LE
    Biotechnol Bioeng; 2008 Dec; 101(5):873-80. PubMed ID: 18819156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.