These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20678141)

  • 1. Transport and variability of fecal bacteria in carbonate conglomerate aquifers.
    Goeppert N; Goldscheider N
    Ground Water; 2011; 49(1):77-84. PubMed ID: 20678141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a numerical indicator of microbial contamination for karst springs.
    Butscher C; Auckenthaler A; Scheidler S; Huggenberger P
    Ground Water; 2011; 49(1):66-76. PubMed ID: 20180864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viruses and bacteria in karst and fractured rock aquifers in East Tennessee, USA.
    Johnson TB; McKay LD; Layton AC; Jones SW; Johnson GC; Cashdollar JL; Dahling DR; Villegas LF; Fout GS; Williams DE; Sayler G
    Ground Water; 2011; 49(1):98-110. PubMed ID: 20331750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe.
    Vías J; Andreo B; Ravbar N; Hötzl H
    J Environ Manage; 2010 Jul; 91(7):1500-10. PubMed ID: 20346572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres.
    Auckenthaler A; Raso G; Huggenberger P
    Water Sci Technol; 2002; 46(3):131-8. PubMed ID: 12227598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial source tracking: a forensic technique for microbial source identification?
    Stapleton CM; Wyer MD; Kay D; Crowther J; McDonald AT; Walters M; Gawler A; Hindle T
    J Environ Monit; 2007 May; 9(5):427-39. PubMed ID: 17492088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized permeability in carbonate aquifers.
    Worthington SR; Ford DC
    Ground Water; 2009; 47(3):326-36. PubMed ID: 19245541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fecal indicator bacteria variability in samples pumped from monitoring wells.
    Kozuskanich J; Novakowski KS; Anderson BC
    Ground Water; 2011; 49(1):43-52. PubMed ID: 20497242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: hydrographic patterns and terrestrial runoff relationships.
    Stumpf CH; Piehler MF; Thompson S; Noble RT
    Water Res; 2010 Sep; 44(16):4704-15. PubMed ID: 20673947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs.
    Pronk M; Goldscheider N; Zopfi J
    Environ Sci Technol; 2007 Dec; 41(24):8400-5. PubMed ID: 18200870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nonpoint source microbial contamination in an urbanizing watershed serving as a municipal water supply.
    Rowny JG; Stewart JR
    Water Res; 2012 Nov; 46(18):6143-53. PubMed ID: 23021518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.
    Evanson M; Ambrose RF
    Water Res; 2006 Feb; 40(3):475-86. PubMed ID: 16386284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enterococci vs coliforms as a possible fecal contamination indicator: baseline data for Karachi.
    Hussain M; Rasool SA; Khan MT; Wajid A
    Pak J Pharm Sci; 2007 Apr; 20(2):107-11. PubMed ID: 17416563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators.
    Haack SK; Duris JW; Fogarty LR; Kolpin DW; Focazio MJ; Furlong ET; Meyer MT
    J Environ Qual; 2009; 38(1):248-58. PubMed ID: 19141815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient dynamics as indicators of karst processes: comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.).
    Mahler BJ; Valdes D; Musgrove M; Massei N
    J Contam Hydrol; 2008 May; 98(1-2):36-49. PubMed ID: 18423785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.