BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20678224)

  • 1. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis.
    Aravind L; de Souza RF; Iyer LM
    Biol Direct; 2010 Aug; 5():48. PubMed ID: 20678224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
    Mocibob M; Ivic N; Bilokapic S; Maier T; Luic M; Ban N; Weygand-Durasevic I
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14585-90. PubMed ID: 20663952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis.
    Sauguet L; Moutiez M; Li Y; Belin P; Seguin J; Le Du MH; Thai R; Masson C; Fonvielle M; Pernodet JL; Charbonnier JB; Gondry M
    Nucleic Acids Res; 2011 May; 39(10):4475-89. PubMed ID: 21296757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxed substrate specificity leads to extensive tRNA mischarging by Streptococcus pneumoniae class I and class II aminoacyl-tRNA synthetases.
    Shepherd J; Ibba M
    mBio; 2014 Sep; 5(5):e01656-14. PubMed ID: 25205097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella.
    Seguin J; Moutiez M; Li Y; Belin P; Lecoq A; Fonvielle M; Charbonnier JB; Pernodet JL; Gondry M
    Chem Biol; 2011 Nov; 18(11):1362-8. PubMed ID: 22118670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism.
    Buckel P; Piepersberg W; Böck A
    Mol Gen Genet; 1976 Nov; 149(1):51-61. PubMed ID: 796671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins.
    Iyer LM; Abhiman S; Maxwell Burroughs A; Aravind L
    Mol Biosyst; 2009 Dec; 5(12):1636-60. PubMed ID: 20023723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the gap between ribosomal and nonribosomal protein synthesis.
    Roy H; Ibba M
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14517-8. PubMed ID: 20696925
    [No Abstract]   [Full Text] [Related]  

  • 9. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.
    Aravind L; Anantharaman V; Koonin EV
    Proteins; 2002 Jul; 48(1):1-14. PubMed ID: 12012333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World.
    Jakubowski H
    FEBS Lett; 2016 Feb; 590(4):469-81. PubMed ID: 26831912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis.
    Sissler M; Delorme C; Bond J; Ehrlich SD; Renault P; Francklyn C
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8985-90. PubMed ID: 10430882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-editing by aminoacyl-tRNA synthetase-like editing domains.
    Kuzmishin Nagy AB; Bakhtina M; Musier-Forsyth K
    Enzymes; 2020; 48():69-115. PubMed ID: 33837712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of the interaction between cyclodipeptide synthases and aminoacylated tRNA substrates.
    Bourgeois G; Seguin J; Babin M; Gondry M; Mechulam Y; Schmitt E
    RNA; 2020 Nov; 26(11):1589-1602. PubMed ID: 32680846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan.
    Lloyd AJ; Gilbey AM; Blewett AM; De Pascale G; El Zoeiby A; Levesque RC; Catherwood AC; Tomasz A; Bugg TD; Roper DI; Dowson CG
    J Biol Chem; 2008 Mar; 283(10):6402-17. PubMed ID: 18077448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase.
    Fourmy D; Mechulam Y; Blanquet S
    Biochemistry; 1995 Dec; 34(48):15681-8. PubMed ID: 7495798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog.
    Bonnefond L; Arai T; Sakaguchi Y; Suzuki T; Ishitani R; Nureki O
    Proc Natl Acad Sci U S A; 2011 Mar; 108(10):3912-7. PubMed ID: 21325056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase.
    Cho HY; Lee HJ; Choi YS; Kim DK; Jin KS; Kim S; Kang BS
    J Mol Biol; 2019 Nov; 431(22):4475-4496. PubMed ID: 31473157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-domain communication in aminoacyl-tRNA synthetases.
    Alexander RW; Schimmel P
    Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.