These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20678477)

  • 21. [Computational method for prediction of protein functional sites using specificity determinants].
    Kalinina OV; Rassel RB; Rakhmaninova AB; Gel'fand MS
    Mol Biol (Mosk); 2007; 41(1):151-62. PubMed ID: 17380902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre.
    Bennett-Lovsey RM; Herbert AD; Sternberg MJ; Kelley LA
    Proteins; 2008 Feb; 70(3):611-25. PubMed ID: 17876813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On distance and similarity in fold space.
    Sippl MJ
    Bioinformatics; 2008 Mar; 24(6):872-3. PubMed ID: 18227113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of the probabilities for evolutionary structural changes in protein folds.
    Viksna J; Gilbert D
    Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel Niche Pareto AlineaGA--an evolutionary multiobjective approach on multiple sequence alignment.
    da Silva FJ; Pérez JM; Pulido JA; Rodríguez MA
    J Integr Bioinform; 2011 Sep; 8(3):174. PubMed ID: 21926437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deposition and extension approach to find longest common subsequence for thousands of long sequences.
    Ning K
    Comput Biol Chem; 2010 Jun; 34(3):149-57. PubMed ID: 20570215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Novel Approach to Multiple Sequence Alignment Using Multiobjective Evolutionary Algorithm Based on Decomposition.
    Zhu H; He Z; Jia Y
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):717-27. PubMed ID: 25700475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs.
    Hung CL; Lin YS; Lin CY; Chung YC; Chung YF
    Comput Biol Chem; 2015 Oct; 58():62-8. PubMed ID: 26052076
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel hybrid genetic algorithm for progressive multiple sequence alignment.
    Afridi MI
    Int J Bioinform Res Appl; 2013; 9(6):614-24. PubMed ID: 24084242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DIALIGN: multiple DNA and protein sequence alignment at BiBiServ.
    Morgenstern B
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W33-6. PubMed ID: 15215344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DIALIGN at GOBICS--multiple sequence alignment using various sources of external information.
    Al Ait L; Yamak Z; Morgenstern B
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W3-7. PubMed ID: 23620293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite width model sequence comparison.
    Chia N; Bundschuh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021906. PubMed ID: 15447514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A statistical physics perspective on alignment-independent protein sequence comparison.
    Chattopadhyay AK; Nasiev D; Flower DR
    Bioinformatics; 2015 Aug; 31(15):2469-74. PubMed ID: 25810434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic detection of anchor points for multiple sequence alignment.
    Pitschi F; Devauchelle C; Corel E
    BMC Bioinformatics; 2010 Sep; 11():445. PubMed ID: 20813050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization and Performance Analysis of CAT Method for DNA Sequence Similarity Searching and Alignment.
    Gancheva V; Stoev H
    Genes (Basel); 2024 Mar; 15(3):. PubMed ID: 38540400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retrieval accuracy, statistical significance and compositional similarity in protein sequence database searches.
    Yu YK; Gertz EM; Agarwala R; Schäffer AA; Altschul SF
    Nucleic Acids Res; 2006; 34(20):5966-73. PubMed ID: 17068079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A geometric interpretation for local alignment-free sequence comparison.
    Behnam E; Waterman MS; Smith AD
    J Comput Biol; 2013 Jul; 20(7):471-85. PubMed ID: 23829649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.