These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20678658)

  • 1. H2O2-sensitive quantum dots for the label-free detection of glucose.
    Hu M; Tian J; Lu HT; Weng LX; Wang LH
    Talanta; 2010 Aug; 82(3):997-1002. PubMed ID: 20678658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing.
    Cao L; Ye J; Tong L; Tang B
    Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.
    Li X; Zhou Y; Zheng Z; Yue X; Dai Z; Liu S; Tang Z
    Langmuir; 2009 Jun; 25(11):6580-6. PubMed ID: 19260661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose.
    Yuan J; Guo W; Yin J; Wang E
    Talanta; 2009 Mar; 77(5):1858-63. PubMed ID: 19159810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay.
    Priyam A; Chatterjee A; Bhattacharya SC; Saha A
    Photochem Photobiol Sci; 2009 Mar; 8(3):362-70. PubMed ID: 19255677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric detection of urine glucose using a C/CdTe QDs-GOx aerogel based on a microfluidic assay sensor.
    Hu T; Xu K; Qiu S; Han Y; Chen J; Xu J; Chen K; Sun Z; Yi H; Ni Z
    J Mater Chem B; 2020 Aug; 8(32):7160-7165. PubMed ID: 32567624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H(2) O(2) - and pH-sensitive CdTe quantum dots as fluorescence probes for the detection of glucose.
    Li Y; Li B; Zhang J
    Luminescence; 2013; 28(5):667-72. PubMed ID: 22941960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free and non-contact optical biosensing of glucose with quantum dots.
    Khan SA; Smith GT; Seo F; Ellerbee AK
    Biosens Bioelectron; 2015 Feb; 64():30-5. PubMed ID: 25189097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.
    Liu Q; Lu X; Li J; Yao X; Li J
    Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON fluorescence sensor for highly selective and sensitive detection of Cd2+.
    Gui R; An X; Su H; Shen W; Chen Z; Wang X
    Talanta; 2012 May; 94():257-62. PubMed ID: 22608445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dots-bienzyme hybrid system for the sensitive determination of glucose.
    Yuan J; Guo W; Wang E
    Biosens Bioelectron; 2008 May; 23(10):1567-71. PubMed ID: 18356038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose.
    Yeh TY; Wang CI; Chang HT
    Talanta; 2013 Oct; 115():718-23. PubMed ID: 24054653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile interface of biological oxidant and luminescent CdTe quantum dots: implications in nanodiagnostics.
    Priyam A; Bhattacharya SC; Saha A
    Phys Chem Chem Phys; 2009 Jan; 11(3):520-7. PubMed ID: 19283269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free Si quantum dots as photoluminescence probes for glucose detection.
    Yi Y; Deng J; Zhang Y; Li H; Yao S
    Chem Commun (Camb); 2013 Jan; 49(6):612-4. PubMed ID: 23223193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose.
    Lv X; Wang X; Huang D; Niu C; Zeng G; Niu Q
    Talanta; 2014 Nov; 129():20-5. PubMed ID: 25127560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient core shell structured dual response ratiometric fluorescence probe for determination of H
    Lu H; Yu C; Zhang Y; Xu S
    Anal Chim Acta; 2019 Feb; 1048():178-185. PubMed ID: 30598148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.
    Wu P; He Y; Wang HF; Yan XP
    Anal Chem; 2010 Feb; 82(4):1427-33. PubMed ID: 20092317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dots and ionic liquid-sensitized effect as an efficient and green catalyst for the sensitive determination of glucose.
    Azizi SN; Chaichi MJ; Shakeri P; Bekhradnia A
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jul; 146():277-85. PubMed ID: 25819316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.