BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20678863)

  • 1. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
    Bartzas G; Komnitsas K
    J Hazard Mater; 2010 Nov; 183(1-3):301-8. PubMed ID: 20678863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers.
    Han YS; Gallegos TJ; Demond AH; Hayes KF
    Water Res; 2011 Jan; 45(2):593-604. PubMed ID: 20974481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste green sands as reactive media for the removal of zinc from water.
    Lee T; Park JW; Lee JH
    Chemosphere; 2004 Aug; 56(6):571-81. PubMed ID: 15212900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns.
    Wu Y; Slater L; Versteeg R; LaBrecque D
    J Contam Hydrol; 2008 Jan; 95(3-4):154-67. PubMed ID: 17996979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron.
    Furukawa Y; Kim JW; Watkins J; Wilkin RT
    Environ Sci Technol; 2002 Dec; 36(24):5469-75. PubMed ID: 12521177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions].
    Zhou SG; Zhou LX; Chen FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents.
    Deliyanni EA; Peleka EN; Matis KA
    J Hazard Mater; 2009 Dec; 172(2-3):550-8. PubMed ID: 19717230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of reactive filter media for treating landfill leachate.
    KietliƄska A; Renman G
    Chemosphere; 2005 Nov; 61(7):933-40. PubMed ID: 16257316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron hydroxy carbonate formation in zerovalent iron permeable reactive barriers: characterization and evaluation of phase stability.
    Lee TR; Wilkin RT
    J Contam Hydrol; 2010 Jul; 116(1-4):47-57. PubMed ID: 20554346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
    Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longevity of granular iron in groundwater treatment processes: corrosion product development.
    Kohn T; Livi KJ; Roberts AL; Vikesland PJ
    Environ Sci Technol; 2005 Apr; 39(8):2867-79. PubMed ID: 15884388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers.
    Pagnanelli F; Viggi CC; Mainelli S; Toro L
    J Hazard Mater; 2009 Oct; 170(2-3):998-1005. PubMed ID: 19505754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ; Song H; Shin WS; Choi SJ; Kim YH
    Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.