These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20678927)

  • 21. Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction.
    Silva SS; Matos ZR; Carvalho W
    Biotechnol Prog; 2005; 21(5):1449-52. PubMed ID: 16209549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.
    Zhao X; Dong L; Chen L; Liu D
    Bioresour Technol; 2013 May; 135():350-6. PubMed ID: 23127840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.
    Rojas-Rejón ÓA; Poggi-Varaldo HM; Ramos-Valdivia AC; Ponce-Noyola T; Cristiani-Urbina E; Martínez A; de la Torre M
    Biotechnol Prog; 2016 Mar; 32(2):321-6. PubMed ID: 26701152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis.
    Hodge DB; Karim MN; Schell DJ; McMillan JD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):88-107. PubMed ID: 18512162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.
    Mendes FM; Laurito DF; Bazzeggio M; Ferraz A; Milagres AM
    Biotechnol Prog; 2013; 29(4):890-5. PubMed ID: 23666781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic saccharification of sugarcane bagasse by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1.
    He YC; Xia DQ; Ma CL; Gong L; Gong T; Wu MX; Zhang Y; Tang YJ; Xu JH; Liu YY
    Bioresour Technol; 2013 May; 135():18-22. PubMed ID: 23186661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.
    Geddes CC; Peterson JJ; Roslander C; Zacchi G; Mullinnix MT; Shanmugam KT; Ingram LO
    Bioresour Technol; 2010 Mar; 101(6):1851-7. PubMed ID: 19880314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase.
    Li J; Zhou P; Liu H; Wu K; Xiao W; Gong Y; Lin J; Liu Z
    Bioresour Technol; 2014 Jul; 163():390-4. PubMed ID: 24841492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents.
    Martín C; Galbe M; Nilvebrant NO; Jönsson LJ
    Appl Biochem Biotechnol; 2002; 98-100():699-716. PubMed ID: 12018294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse.
    Vasconcellos VM; Tardioli PW; Giordano RL; Farinas CS
    N Biotechnol; 2016 May; 33(3):331-7. PubMed ID: 26709004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH).
    Rodrigues Rde C; Rocha GJ; Rodrigues D; Filho HJ; Felipe Md; Pessoa A
    Bioresour Technol; 2010 Feb; 101(4):1247-53. PubMed ID: 19846294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production.
    Adsul MG; Dixit P; Saini JK; Gupta RP; Ramakumar SSV; Mathur AS
    Biotechnol Bioeng; 2022 Aug; 119(8):2167-2181. PubMed ID: 35470437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation.
    Travaini R; Otero MD; Coca M; Da-Silva R; Bolado S
    Bioresour Technol; 2013 Apr; 133():332-9. PubMed ID: 23434810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse.
    Mello-de-Sousa TM; Silva-Pereira I; Poças-Fonseca MJ
    Enzyme Microb Technol; 2011 Jan; 48(1):19-26. PubMed ID: 22112766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies.
    Li J; Zhou P; Liu H; Xiong C; Lin J; Xiao W; Gong Y; Liu Z
    Bioresour Technol; 2014 Mar; 155():258-65. PubMed ID: 24457310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentation of sugarcane bagasse and chicken manure to calcium carboxylates under thermophilic conditions.
    Fu Z; Holtzapple MT
    Appl Biochem Biotechnol; 2010 Sep; 162(2):561-78. PubMed ID: 19711199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast].
    Zhang HR; Zeng JZ; He CX; Fang H; Cai AH
    Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid.
    Santos VT; Esteves PJ; Milagres AM; Carvalho W
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1089-98. PubMed ID: 20953894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis.
    Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV
    Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.