These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20678930)

  • 1. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Bongers M; Walton JD
    Bioresour Technol; 2010 Dec; 101(23):9097-105. PubMed ID: 20678930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Aslam N; Walton JD
    Biotechnol Bioeng; 2010 Aug; 106(5):707-20. PubMed ID: 20564609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Walton JD
    Biotechnol Biofuels; 2010 Oct; 3():22. PubMed ID: 20939889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GENPLAT: an automated platform for biomass enzyme discovery and cocktail optimization.
    Walton J; Banerjee G; Car S
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass.
    Gao D; Chundawat SP; Uppugundla N; Balan V; Dale BE
    Biotechnol Bioeng; 2011 Aug; 108(8):1788-800. PubMed ID: 21437882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.
    Chundawat SP; Balan V; Dale BE
    Biotechnol Bioeng; 2008 Apr; 99(6):1281-94. PubMed ID: 18306256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulosic biomass pretreatment using AFEX.
    Balan V; Bals B; Chundawat SP; Marshall D; Dale BE
    Methods Mol Biol; 2009; 581():61-77. PubMed ID: 19768616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes.
    Zhang M; Su R; Qi W; He Z
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover.
    Gao D; Chundawat SP; Krishnan C; Balan V; Dale BE
    Bioresour Technol; 2010 Apr; 101(8):2770-81. PubMed ID: 19948399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Apr; 102(6):1544-57. PubMed ID: 19170246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose.
    Banerjee G; Car S; Scott-Craig JS; Hodge DB; Walton JD
    Biotechnol Biofuels; 2011 Jun; 4(1):16. PubMed ID: 21658263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates.
    Rosgaard L; Pedersen S; Langston J; Akerhielm D; Cherry JR; Meyer AS
    Biotechnol Prog; 2007; 23(6):1270-6. PubMed ID: 18062669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of enzyme complexes for lignocellulose hydrolysis.
    Berlin A; Maximenko V; Gilkes N; Saddler J
    Biotechnol Bioeng; 2007 Jun; 97(2):287-96. PubMed ID: 17058283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass.
    Luterbacher JS; Tester JW; Walker LP
    Biotechnol Bioeng; 2010 Oct; 107(3):451-60. PubMed ID: 20521235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment and fractionation of corn stover by ammonia recycle percolation process.
    Kim TH; Lee YY
    Bioresour Technol; 2005 Dec; 96(18):2007-13. PubMed ID: 16112488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Feb; 102(2):457-67. PubMed ID: 18781688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of synthetic Trichoderma-based enzyme mixtures for biomass conversion with an alternative family 5 glycosyl hydrolase from Sporotrichum thermophile.
    Ye Z; Zheng Y; Li B; Borrusch MS; Storms R; Walton JD
    PLoS One; 2014; 9(10):e109885. PubMed ID: 25295862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.