These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20679023)

  • 1. CFD modeling of an ultrasonic separator for the removal of lipid particles from pericardial suction blood.
    Trippa G; Ventikos Y; Taggart DP; Coussios CC
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):282-90. PubMed ID: 20679023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation of the blood separation process.
    De Gruttola S; Boomsma K; Poulikakos D; Ventikos Y
    Artif Organs; 2005 Aug; 29(8):665-74. PubMed ID: 16048484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational simulation of a non-newtonian model of the blood separation process.
    De Gruttola S; Boomsma K; Poulikakos D
    Artif Organs; 2005 Dec; 29(12):949-59. PubMed ID: 16305650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Analyst; 2004 Oct; 129(10):938-43. PubMed ID: 15457327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery.
    Jönsson H; Holm C; Nilsson A; Petersson F; Johnsson P; Laurell T
    Ann Thorac Surg; 2004 Nov; 78(5):1572-7. PubMed ID: 15511433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling centrifugal cell washers using computational fluid dynamics.
    Kellet BE; Han B; Dandy DS; Wickramasinghe SR
    Artif Organs; 2004 Nov; 28(11):1026-34. PubMed ID: 15504118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic control of suspended particles in micro fluidic chips.
    Nilsson A; Petersson F; Jönsson H; Laurell T
    Lab Chip; 2004 Apr; 4(2):131-5. PubMed ID: 15052353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFD modelling of flow field and particle tracking in a hydrodynamic stormwater separator.
    Lee JH; Bang KW; Choi CS; Lim HS
    Water Sci Technol; 2010; 62(10):2381-8. PubMed ID: 21076225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish.
    Hung TC; Piedrahita RH; Cheer A
    Bioinspir Biomim; 2012 Dec; 7(4):046003. PubMed ID: 22820145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD simulation of centrifugal cells washers.
    Kellet BE; Binbing H; Dandy DS; Wickramasinghe SR
    Biomed Sci Instrum; 2004; 40():225-31. PubMed ID: 15133962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary.
    Trippa G; Trine S; Ventikos Y; Coussios CC
    J Acoust Soc Am; 2012 May; 131(5):3627-37. PubMed ID: 22559340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics.
    Müller M; Schirm S; Teschner M
    Technol Health Care; 2004; 12(1):25-31. PubMed ID: 15096684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm.
    Filipovic N; Ravnic D; Kojic M; Mentzer SJ; Haber S; Tsuda A
    Microvasc Res; 2008 Mar; 75(2):279-84. PubMed ID: 18068201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. External tissue support and fluid-structure simulation in blood flows.
    Moireau P; Xiao N; Astorino M; Figueroa CA; Chapelle D; Taylor CA; Gerbeau JF
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):1-18. PubMed ID: 21308393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamic prediction of the residence time of a vortex separator applied to disinfection.
    Egarr D; Faram MG; O'Doherty T; Phipps D; Syred N
    Water Sci Technol; 2005; 52(3):29-36. PubMed ID: 16206841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.