These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20679377)

  • 1. Preparation of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) nanoparticles as carriers for gene delivery.
    Csaba NS; Sánchez A; Alonso MJ
    Cold Spring Harb Protoc; 2010 Aug; 2010(8):pdb.prot5468. PubMed ID: 20679377
    [No Abstract]   [Full Text] [Related]  

  • 2. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles.
    Mainardes RM; Khalil NM; Gremião MP
    Int J Pharm; 2010 Aug; 395(1-2):266-71. PubMed ID: 20580792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel cationic 6-lauroxyhexyl lysinate modified poly(lactic acid)-poly(ethylene glycol) nanoparticles enhance gene transfection.
    Liu C; Chen Z; Yu W; Zhang N
    J Colloid Interface Sci; 2011 Feb; 354(2):528-35. PubMed ID: 21094495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems.
    Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y
    J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and biodisposition of methoxypolyethylene glycol amine-poly(DL-lactic acid) copolymer nanoparticles loaded with pyrene-ended poly(DL-lactic acid).
    Sasatsu M; Onishi H; Machida Y
    Int J Pharm; 2008 Jun; 358(1-2):271-7. PubMed ID: 18448290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cNGR conjugated poly(lactic acid)-poly(ethylene glycol) nanoparticles for targeted gene delivery.
    Liu C; Yu W; Chen Z; Zhang J; Zhang N
    J Control Release; 2011 Nov; 152 Suppl 1():e155-7. PubMed ID: 22195818
    [No Abstract]   [Full Text] [Related]  

  • 7. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation.
    Lassalle V; Ferreira ML
    Macromol Biosci; 2007 Jun; 7(6):767-83. PubMed ID: 17541922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a nanostructured star block copolymer with a cyclotriphosphazene core.
    Han JK; Kim ST; Kim HJ; Kwon YK
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3446-9. PubMed ID: 17252786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-drying and lyopreservation of diblock and triblock poly(lactic acid)-poly(ethylene oxide) (PLA-PEO) copolymer nanoparticles.
    De Jaeghere F; Allémann E; Feijen J; Kissel T; Doelker E; Gurny R
    Pharm Dev Technol; 2000; 5(4):473-83. PubMed ID: 11109247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers.
    Gref R; Quellec P; Sanchez A; Calvo P; Dellacherie E; Alonso MJ
    Eur J Pharm Biopharm; 2001 Mar; 51(2):111-8. PubMed ID: 11226817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior.
    Liu Q; Cai C; Dong CM
    J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEGylation strategies for active targeting of PLA/PLGA nanoparticles.
    Betancourt T; Byrne JD; Sunaryo N; Crowder SW; Kadapakkam M; Patel S; Casciato S; Brannon-Peppas L
    J Biomed Mater Res A; 2009 Oct; 91(1):263-76. PubMed ID: 18980197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a new poly(ethylene glycol)-graft-poly(D,L-lactic acid) as potential drug carriers.
    Pan J; Zhao M; Liu Y; Wang B; Mi L; Yang L
    J Biomed Mater Res A; 2009 Apr; 89(1):160-7. PubMed ID: 18431784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dexamethasone nano-aggregates composed of PEG-PLA-PEG triblock copolymers for anti-proliferation of smooth muscle cells.
    Park TG; Yoo HS
    Int J Pharm; 2006 Dec; 326(1-2):169-73. PubMed ID: 16889913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior.
    Karavelidis V; Giliopoulos D; Karavas E; Bikiaris D
    Eur J Pharm Sci; 2010 Dec; 41(5):636-43. PubMed ID: 20863892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Current status and perspective of research on PEG-PLGA].
    Zhou HN; Li YM; Liu T
    Zhonghua Zhong Liu Za Zhi; 2010 Aug; 32(8):561-3. PubMed ID: 21122404
    [No Abstract]   [Full Text] [Related]  

  • 17. Fe(3)O(4) nanoparticles-loaded PEG-PLA polymeric vesicles as labels for ultrasensitive immunosensors.
    Wei Q; Li T; Wang G; Li H; Qian Z; Yang M
    Biomaterials; 2010 Oct; 31(28):7332-9. PubMed ID: 20619889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein interaction with a Pluronic-modified poly(lactic acid) Langmuir monolayer.
    Kiss E; Dravetzky K; Hill K; Kutnyánszky E; Varga A
    J Colloid Interface Sci; 2008 Sep; 325(2):337-45. PubMed ID: 18649892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide).
    Zweers ML; Engbers GH; Grijpma DW; Feijen J
    J Control Release; 2004 Dec; 100(3):347-56. PubMed ID: 15567501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content.
    Sheng Y; Yuan Y; Liu C; Tao X; Shan X; Xu F
    J Mater Sci Mater Med; 2009 Sep; 20(9):1881-91. PubMed ID: 19365612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.