These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20679385)

  • 1. Multi-layer in vivo imaging of neocortex using a microprism.
    Chia TH; Levene MJ
    Cold Spring Harb Protoc; 2010 Aug; 2010(8):pdb.prot5476. PubMed ID: 20679385
    [No Abstract]   [Full Text] [Related]  

  • 2. High-resolution functional optical imaging: from the neocortex to the eye.
    Grinvald A; Bonhoeffer T; Vanzetta I; Pollack A; Aloni E; Ofri R; Nelson D
    Ophthalmol Clin North Am; 2004 Mar; 17(1):53-67. PubMed ID: 15102513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging input and output dynamics of neocortical networks in vivo: exciting times ahead.
    Grinvald A
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14125-6. PubMed ID: 16189023
    [No Abstract]   [Full Text] [Related]  

  • 4. Reverse optical probing (ROPING) of neocortical circuits.
    Aaron G; Yuste R
    Synapse; 2006 Nov; 60(6):437-40. PubMed ID: 16881073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo optical imaging: preclinical applications and considerations.
    Hickson J
    Urol Oncol; 2009; 27(3):295-7. PubMed ID: 19414115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging in oncology.
    Kim HL
    Urol Oncol; 2009; 27(3):298-300. PubMed ID: 19414116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of gold nanorods for cancer imaging and photothermal therapy.
    Huang X; El-Sayed IH; El-Sayed MA
    Methods Mol Biol; 2010; 624():343-57. PubMed ID: 20217607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex.
    De Paola V; Holtmaat A; Knott G; Song S; Wilbrecht L; Caroni P; Svoboda K
    Neuron; 2006 Mar; 49(6):861-75. PubMed ID: 16543134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomedical applications of fluorescence imaging in vivo.
    Hassan M; Klaunberg BA
    Comp Med; 2004 Dec; 54(6):635-44. PubMed ID: 15679261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular-resolution in vivo imaging of the feline retina using adaptive optics: preliminary results.
    Rosolen SG; Lamory B; Harms F; Sahel JA; Picaud S; LeGargasson JF
    Vet Ophthalmol; 2010 Nov; 13(6):369-76. PubMed ID: 21182721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging.
    Qian J; Jiang L; Cai F; Wang D; He S
    Biomaterials; 2011 Feb; 32(6):1601-10. PubMed ID: 21106233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCD-based projectional imaging of fluorescent probes in tissue-like media: experimental setup and characterization.
    Pöschinger T; Janunts E; Brünner H; Langenbucher A
    Z Med Phys; 2010; 20(4):299-308. PubMed ID: 21134631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging.
    Srinivas M; Cruz LJ; Bonetto F; Heerschap A; Figdor CG; de Vries IJ
    Biomaterials; 2010 Sep; 31(27):7070-7. PubMed ID: 20566214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery.
    Huang CC; Huang W; Yeh CS
    Biomaterials; 2011 Jan; 32(2):556-64. PubMed ID: 20875684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo optical imaging in arthritis--an enlightening future?
    Gompels LL; Lim NH; Vincent T; Paleolog EM
    Rheumatology (Oxford); 2010 Aug; 49(8):1436-46. PubMed ID: 20338885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fez1 is layer-specifically expressed in the adult mouse neocortex.
    Inoue K; Terashima T; Nishikawa T; Takumi T
    Eur J Neurosci; 2004 Dec; 20(11):2909-16. PubMed ID: 15579145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast.
    Bégin S; Bélanger E; Laffray S; Vallée R; Côté D
    J Biophotonics; 2009 Nov; 2(11):632-42. PubMed ID: 19847801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of the dendritic arbors of layer V pyramidal cells in the cerebral cortex using a laser scanning microscope with a stick-type objective lens.
    Fukuda Y; Kawano Y; Tanikawa Y; Oba M; Koyama M; Takagi H; Matsumoto M; Nagayama K; Setou M
    Neurosci Lett; 2006 May; 400(1-2):53-7. PubMed ID: 16530329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioluminescence imaging of hollow fibers in living animals: its application in monitoring molecular pathways.
    Zhang GJ; Chen TB; Hargreaves R; Sur C; Williams DL
    Nat Protoc; 2008; 3(5):891-9. PubMed ID: 18451797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical imaging: skin cancer imaging.
    Mullani NA; O'Neil RG
    J Nucl Med; 2008 Jun; 49(6):1031. PubMed ID: 18483089
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.