These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20679746)

  • 1. The effect of induced sputum and bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease on neutrophil migration in vitro.
    Babusyte A; Jeroch J; Stakauskas R; Stravinskaite K; Malakauskas K; Sakalauskas R
    Medicina (Kaunas); 2010; 46(5):315-22. PubMed ID: 20679746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD.
    Wen Y; Reid DW; Zhang D; Ward C; Wood-Baker R; Walters EH
    Int J Chron Obstruct Pulmon Dis; 2010 Oct; 5():327-34. PubMed ID: 21037956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients.
    Wu J; Hillier C; Komenda P; Lobato de Faria R; Levin D; Zhang M; Lin F
    PLoS One; 2015; 10(5):e0126523. PubMed ID: 25961597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bronchoalveolar Lavage Fluid from Chronic Obstructive Pulmonary Disease Patients Increases Neutrophil Chemotaxis Measured by a Microfluidic Platform.
    Ren J; Chen W; Zhong Z; Wang N; Chen X; Yang H; Li J; Tang P; Fan Y; Lin F; Bai C; Wu J
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD.
    Kunz LI; Lapperre TS; Snoeck-Stroband JB; Budulac SE; Timens W; van Wijngaarden S; Schrumpf JA; Rabe KF; Postma DS; Sterk PJ; Hiemstra PS;
    Respir Res; 2011 Mar; 12(1):34. PubMed ID: 21426578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD.
    Babusyte A; Stravinskaite K; Jeroch J; Lötvall J; Sakalauskas R; Sitkauskiene B
    Respir Res; 2007 Nov; 8(1):81. PubMed ID: 18001475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS).
    Freeman CM; Crudgington S; Stolberg VR; Brown JP; Sonstein J; Alexis NE; Doerschuk CM; Basta PV; Carretta EE; Couper DJ; Hastie AT; Kaner RJ; O'Neal WK; Paine R; Rennard SI; Shimbo D; Woodruff PG; Zeidler M; Curtis JL
    J Transl Med; 2015 Jan; 13():19. PubMed ID: 25622723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD.
    Yang M; Kohler M; Heyder T; Forsslund H; Garberg HK; Karimi R; Grunewald J; Berven FS; Magnus Sköld C; Wheelock ÅM
    Respir Res; 2018 Mar; 19(1):40. PubMed ID: 29514648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease.
    Mallia P; Webber J; Gill SK; Trujillo-Torralbo MB; Calderazzo MA; Finney L; Bakhsoliani E; Farne H; Singanayagam A; Footitt J; Hewitt R; Kebadze T; Aniscenko J; Padmanaban V; Molyneaux PL; Adcock IM; Barnes PJ; Ito K; Elkin SL; Kon OM; Cookson WO; Moffat MF; Johnston SL; Tregoning JS
    J Allergy Clin Immunol; 2018 Sep; 142(3):815-823.e6. PubMed ID: 29310905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of bacterial exposure on phagocytic capability and surface marker expression of sputum macrophages and neutrophils in COPD patients.
    Lea S; Gaskell R; Hall S; Maschera B; Hessel E; Singh D
    Clin Exp Immunol; 2021 Oct; 206(1):99-109. PubMed ID: 34143447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of chitotriosidase and YKL-40 in peripheral blood and sputum of healthy smokers and patients with chronic obstructive pulmonary disease.
    Majewski S; Tworek D; Szewczyk K; Kiszałkiewicz J; Kurmanowska Z; Brzeziańska-Lasota E; Jerczyńska H; Antczak A; Piotrowski WJ; Górski P
    Int J Chron Obstruct Pulmon Dis; 2019; 14():1611-1631. PubMed ID: 31413557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls.
    Kawayama T; Kinoshita T; Matsunaga K; Kobayashi A; Hayamizu T; Johnson M; Hoshino T
    Int J Chron Obstruct Pulmon Dis; 2016; 11():295-303. PubMed ID: 26929615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic signs of neutrophil mobilization during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease.
    Andelid K; Andersson A; Yoshihara S; Åhrén C; Jirholt P; Ekberg-Jansson A; Lindén A
    Int J Chron Obstruct Pulmon Dis; 2015; 10():1253-63. PubMed ID: 26170654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of bradykinin 1 receptor antagonist BI 1026706 on pulmonary inflammation after segmental lipopolysaccharide challenge in healthy smokers.
    Gress C; Vogel-Claussen J; Badorrek P; Müller M; Hohl K; Konietzke M; Litzenburger T; Seibold W; Gupta A; Hohlfeld JM
    Pulm Pharmacol Ther; 2023 Oct; 82():102246. PubMed ID: 37562641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulated apoptosis and NFkappaB expression in COPD subjects.
    Brown V; Elborn JS; Bradley J; Ennis M
    Respir Res; 2009 Mar; 10(1):24. PubMed ID: 19296848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring PI3Kδ Molecular Pathways in Stable COPD and Following an Acute Exacerbation, Two Randomized Controlled Trials.
    Begg M; Hamblin JN; Jarvis E; Bradley G; Mark S; Michalovich D; Lennon M; Wajdner HE; Amour A; Wilson R; Saunders K; Tanaka R; Arai S; Tang T; Van Holsbeke C; De Backer J; Vos W; Titlestad IL; FitzGerald JM; Killian K; Bourbeau J; Poirier C; Maltais F; Cahn A; Hessel EM
    Int J Chron Obstruct Pulmon Dis; 2021; 16():1621-1636. PubMed ID: 34113094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified Bushen Yiqi Formula mitigates pulmonary inflammation and airway remodeling by inhibiting neutrophils chemotaxis and IL17 signaling pathway in rats with COPD.
    Kong Q; Wang B; Zhong Y; Chen W; Sun J; Liu B; Dong J
    J Ethnopharmacol; 2024 Mar; 321():117497. PubMed ID: 38048893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintained smoking cessation for 6 months equilibrates the percentage of sputum CD8+ lymphocyte cells with that of nonsmokers.
    Bouloukaki I; Tsoumakidou M; Vardavas CI; Mitrouska I; Koutala E; Siafakas NM; Schiza SE; Tzanakis N
    Mediators Inflamm; 2009; 2009():812102. PubMed ID: 20182552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of sputum p38 MAPK is correlated with airway inflammation and reduced FEV1 in COPD patients.
    Huang C; Xie M; He X; Gao H
    Med Sci Monit; 2013 Dec; 19():1229-35. PubMed ID: 24382347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased CD11b and Decreased CD62L in Blood and Airway Neutrophils from Long-Term Smokers with and without COPD.
    Stockfelt M; Christenson K; Andersson A; Björkman L; Padra M; Brundin B; Ganguly K; Asgeirsdottir H; Lindén S; Qvarfordt I; Bylund J; Lindén A
    J Innate Immun; 2020; 12(6):480-489. PubMed ID: 32829330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.