BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20679944)

  • 1. Accuracy validation in a cadaver model of cranial neuronavigation using a surface autoregistration mask.
    Makiese O; Pillai P; Salma A; Sammet S; Ammirati M
    Neurosurgery; 2010 Sep; 67(3 Suppl Operative):ons85-90; discussion ons90. PubMed ID: 20679944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target and trajectory clinical application accuracy in neuronavigation.
    Shamir RR; Joskowicz L; Spektor S; Shoshan Y
    Neurosurgery; 2011 Mar; 68(1 Suppl Operative):95-101; discussion 101-2. PubMed ID: 21206305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy Validation of Neuronavigation Comparing Headholder-Based System with Head-Mounted Array-A Cadaveric Study.
    Pinggera D; Kerschbaumer J; Bauer M; Riedmann M; Conrad M; Brenner E; Thomé C; Freyschlag CF
    World Neurosurg; 2018 Dec; 120():e313-e317. PubMed ID: 30144604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration.
    Mascott CR; Sol JC; Bousquet P; Lagarrigue J; Lazorthes Y; Lauwers-Cances V
    Neurosurgery; 2006 Jul; 59(1 Suppl 1):ONS146-56; discussion ONS146-56. PubMed ID: 16888546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution templates of the fiducial points in image-guided neurosurgery.
    Wang M; Song Z
    Neurosurgery; 2010 Mar; 66(3 Suppl Operative):143-50; discussion 150-1. PubMed ID: 20124925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Image-guided neurosurgery using intraoperative MRI].
    Fujii M; Wakabayashi T
    Brain Nerve; 2009 Jul; 61(7):823-34. PubMed ID: 19618860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the target registration error for surface matching in neuronavigation.
    Wang MN; Song ZJ
    Comput Aided Surg; 2011; 16(4):161-9. PubMed ID: 21631164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigation as a quality management tool in cochlear implant surgery.
    Schipper J; Aschendorff A; Arapakis I; Klenzner T; Teszler CB; Ridder GJ; Laszig R
    J Laryngol Otol; 2004 Oct; 118(10):764-70. PubMed ID: 15550181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensor-based neuronavigation: evaluation of a large continuous patient population.
    Kuehn B; Mularski S; Schoenherr S; Hammersen S; Stendel R; Kombos T; Suess S; Suess O
    Clin Neurol Neurosurg; 2008 Dec; 110(10):1012-9. PubMed ID: 18722707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-guided, endoscopic-assisted drilling and exposure of the whole length of the internal auditory canal and its fundus with preservation of the integrity of the labyrinth using a retrosigmoid approach: a laboratory investigation.
    Pillai P; Sammet S; Ammirati M
    Neurosurgery; 2009 Dec; 65(6 Suppl):53-9; discussion 59. PubMed ID: 19935002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-Based Autonomous Neuroregistration and Neuronavigation: Implementation and Case Studies.
    Kaushik A; Dwarakanath TA; Bhutani G; Srinivas D
    World Neurosurg; 2020 Feb; 134():e256-e271. PubMed ID: 31629139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [LED autoregistration in navigated endonasal sinus surgery].
    Arapakis I; Hubbe U; Maier W; Laszig R; Schipper J
    Laryngorhinootologie; 2005 Jun; 84(6):418-25. PubMed ID: 15940573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronavigation in skull base tumors.
    Kurtsoy A; Menku A; Tucer B; Oktem IS; Akdemir H
    Minim Invasive Neurosurg; 2005 Feb; 48(1):7-12. PubMed ID: 15747210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronavigation-assisted surgery for distal anterior cerebral artery aneurysm.
    Kim TS; Joo SP; Lee JK; Jung S; Kim JH; Kim SH; Kang SS; Yoon W
    Minim Invasive Neurosurg; 2007 Apr; 50(2):77-81. PubMed ID: 17674292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical landmarks for point-matching registration in image-guided neurosurgery.
    Omara AI; Wang M; Fan Y; Song Z
    Int J Med Robot; 2014 Mar; 10(1):55-64. PubMed ID: 23733606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurosurgical stereomorphometry in vivo--method description and error measurement.
    Zieliński P; Dzierzanowski J; Słoniewski P
    Folia Morphol (Warsz); 2003 Feb; 62(1):71-3. PubMed ID: 12769182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoscopic image-guided transoral approach to the craniovertebral junction: an anatomic study comparing surgical exposure and surgical freedom obtained with the endoscope and the operating microscope.
    Pillai P; Baig MN; Karas CS; Ammirati M
    Neurosurgery; 2009 May; 64(5 Suppl 2):437-42; discussion 442-4. PubMed ID: 19404122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain surgery in a stereoscopic virtual reality environment: a single institution's experience with 100 cases.
    Ferroli P; Tringali G; Acerbi F; Aquino D; Franzini A; Broggi G
    Neurosurgery; 2010 Sep; 67(3 Suppl Operative):ons79-84; discussion ons84. PubMed ID: 20679945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of registration mode on neuronavigation precision: an exploration of the role of random error.
    Salma A; Makiese O; Sammet S; Ammirati M
    Comput Aided Surg; 2012; 17(4):172-8. PubMed ID: 22681460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error analysis in cranial neuronavigation.
    Spetzger U; Hubbe U; Struffert T; Reinges MH; Krings T; Krombach GA; Zentner J; Gilsbach JM; Stiehl HS
    Minim Invasive Neurosurg; 2002 Mar; 45(1):6-10. PubMed ID: 11932817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.