These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20680255)

  • 1. Blood vessel rupture by cavitation.
    Chen H; Brayman AA; Bailey MR; Matula TJ
    Urol Res; 2010 Aug; 38(4):321-6. PubMed ID: 20680255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL.
    Zhong P; Zhou Y; Zhu S
    Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock-induced collapse of a bubble inside a deformable vessel.
    Coralic V; Colonius T
    Eur J Mech B Fluids; 2013 Jul; 40():64-74. PubMed ID: 24015027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood vessel deformations on microsecond time scales by ultrasonic cavitation.
    Chen H; Kreider W; Brayman AA; Bailey MR; Matula TJ
    Phys Rev Lett; 2011 Jan; 106(3):034301. PubMed ID: 21405276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on damage mechanism of blood vessel by cavitation bubbles.
    Liu Y; Luo J
    Ultrason Sonochem; 2023 Oct; 99():106562. PubMed ID: 37619475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilar cavitation dynamics and damage patterns produced by parallel fiber alignment to the stone surface in holmium:yttrium aluminum garnet laser lithotripsy.
    Xiang G; Li D; Chen J; Mishra A; Sankin G; Zhao X; Tang Y; Wang K; Yao J; Zhong P
    Phys Fluids (1994); 2023 Mar; 35(3):033303. PubMed ID: 36896246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves.
    Pishchalnikov YA; Sapozhnikov OA; Bailey MR; Williams JC; Cleveland RO; Colonius T; Crum LA; Evan AP; McAteer JA
    J Endourol; 2003 Sep; 17(7):435-46. PubMed ID: 14565872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy.
    Kodama T; Takayama K
    Ultrasound Med Biol; 1998 Jun; 24(5):723-38. PubMed ID: 9695276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory interaction between bubbles and confining microvessels and its implications on clinical vascular injuries of shock-wave lithotripsy.
    Qin S; Hu Y; Jiang Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jul; 53(7):1322-9. PubMed ID: 16889339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for improved shock wave lithotripsy.
    McAteer JA; Bailey MR; Williams JC; Cleveland RO; Evan AP
    Minerva Urol Nefrol; 2005 Dec; 57(4):271-87. PubMed ID: 16247349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field.
    Wu H; Zheng H; Li Y; Ohl CD; Yu H; Li D
    Ultrason Sonochem; 2021 Oct; 78():105735. PubMed ID: 34479075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects.
    Chen H; Brayman AA; Evan AP; Matula TJ
    Ultrasound Med Biol; 2012 Dec; 38(12):2151-62. PubMed ID: 23069136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy.
    Zhong P; Tong HL; Cocks FH; Preminger GM
    J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.