BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20680330)

  • 1. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulation of adult skeletogenesis in starfish and modifications during gene network co-option.
    Yamazaki A; Yamakawa S; Morino Y; Sasakura Y; Wada H
    Sci Rep; 2021 Oct; 11(1):20111. PubMed ID: 34635691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of hesC and gcm in echinoid larval mesenchyme cell development.
    Yamazaki A; Minokawa T
    Dev Growth Differ; 2016 Apr; 58(3):315-26. PubMed ID: 27046223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity.
    Erkenbrack EM; Thompson JR
    Commun Biol; 2019; 2():160. PubMed ID: 31069269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
    Rizzo F; Fernandez-Serra M; Squarzoni P; Archimandritis A; Arnone MI
    Dev Biol; 2006 Dec; 300(1):35-48. PubMed ID: 16997294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
    Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T
    Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms.
    McCauley BS; Wright EP; Exner C; Kitazawa C; Hinman VF
    Evodevo; 2012 Aug; 3(1):17. PubMed ID: 22877149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conserved genetic background for pluteus arm development in brittle stars and sea urchin.
    Morino Y; Koga H; Wada H
    Evol Dev; 2016; 18(2):89-95. PubMed ID: 26773338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of Ets-binding sites in the sea urchin embryo: three base pair conversions redirect expression from mesoderm to ectoderm and endoderm.
    Consales C; Arnone MI
    Gene; 2002 Apr; 287(1-2):75-81. PubMed ID: 11992725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways.
    Sampilo NF; Song JL
    Dev Biol; 2024 Apr; 508():123-137. PubMed ID: 38290645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae.
    Arnone MI; Bogarad LD; Collazo A; Kirchhamer CV; Cameron RA; Rast JP; Gregorians A; Davidson EH
    Development; 1997 Nov; 124(22):4649-59. PubMed ID: 9409681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.