BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 20680393)

  • 1. Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors.
    Bao J; Sack MN
    Cell Mol Life Sci; 2010 Sep; 67(18):3073-87. PubMed ID: 20680393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology.
    Lu Z; Scott I; Webster BR; Sack MN
    Circ Res; 2009 Oct; 105(9):830-41. PubMed ID: 19850949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deacetylation Assays to Unravel the Interplay between Sirtuins (SIRT2) and Specific Protein-substrates.
    Song HY; Park SH; Kang HJ; Vassilopoulos A
    J Vis Exp; 2016 Feb; (108):53563. PubMed ID: 26966987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirtuin Acetylation and Deacetylation: a Complex Paradigm in Neurodegenerative Disease.
    Khan H; Tiwari P; Kaur A; Singh TG
    Mol Neurobiol; 2021 Aug; 58(8):3903-3917. PubMed ID: 33877561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD and ADP-ribose metabolism in mitochondria.
    Dölle C; Rack JG; Ziegler M
    FEBS J; 2013 Aug; 280(15):3530-41. PubMed ID: 23617329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress, thiol redox signaling methods in epigenetics.
    Sundar IK; Caito S; Yao H; Rahman I
    Methods Enzymol; 2010; 474():213-44. PubMed ID: 20609913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation and protection of mitochondrial physiology by sirtuins.
    Pereira CV; Lebiedzinska M; Wieckowski MR; Oliveira PJ
    Mitochondrion; 2012 Jan; 12(1):66-76. PubMed ID: 21787885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation.
    Sauve AA; Youn DY
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):535-43. PubMed ID: 23102634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases.
    Wagner GR; Hirschey MD
    Mol Cell; 2014 Apr; 54(1):5-16. PubMed ID: 24725594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2005 Oct; 280(43):36073-8. PubMed ID: 16131486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intermediary metabolism by protein acetylation.
    Guan KL; Xiong Y
    Trends Biochem Sci; 2011 Feb; 36(2):108-16. PubMed ID: 20934340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1.
    Siegel D; Harris PS; Michel CR; de Cabo R; Fritz KS; Ross D
    Front Pharmacol; 2022; 13():1015642. PubMed ID: 36408211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic regulation of histone H3 lysine (K) acetylation and deacetylation during prolonged oxygen deprivation in a champion anaerobe.
    Wijenayake S; Storey KB
    Mol Cell Biochem; 2020 Nov; 474(1-2):229-241. PubMed ID: 32729004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation.
    Yu J; Auwerx J
    Pharmacol Res; 2010 Jul; 62(1):35-41. PubMed ID: 20026274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells.
    Shukla S; Sharma A; Pandey VK; Raisuddin S; Kakkar P
    Toxicol Appl Pharmacol; 2016 Jan; 291():70-83. PubMed ID: 26712469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins.
    Knyphausen P; de Boor S; Kuhlmann N; Scislowski L; Extra A; Baldus L; Schacherl M; Baumann U; Neundorf I; Lammers M
    J Biol Chem; 2016 Jul; 291(28):14677-94. PubMed ID: 27226597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Post-translational Modifications and Metabolic Control: Sirtuins and Beyond.
    Kulkarni SS; Cantó C
    Curr Diabetes Rev; 2017; 13(4):338-351. PubMed ID: 26900136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Molecular Perspective on Sirtuin Activity.
    Teixeira CSS; Cerqueira NMFSA; Gomes P; Sousa SF
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33203121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms.
    Rauh D; Fischer F; Gertz M; Lakshminarasimhan M; Bergbrede T; Aladini F; Kambach C; Becker CF; Zerweck J; Schutkowski M; Steegborn C
    Nat Commun; 2013; 4():2327. PubMed ID: 23995836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.