These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20680685)

  • 1. Fluorescent viability stains to probe the metabolic status of aflatoxigenic fungus in dual culture of Aspergillus flavus and Pichia anomala.
    Hua SS; Brandl MT; Hernlem B; Eng JG; Sarreal SB
    Mycopathologia; 2011 Feb; 171(2):133-8. PubMed ID: 20680685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.
    Hua SS; Hernlem BJ; Yokoyama W; Sarreal SB
    World J Microbiol Biotechnol; 2015 May; 31(5):729-34. PubMed ID: 25700743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement.
    Tayel AA; El-Tras WF; Moussa SH; El-Agamy MA
    J Sci Food Agric; 2013 Oct; 93(13):3259-63. PubMed ID: 23580136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual fluorochrome flow cytometric assessment of yeast viability.
    Hernlem B; Hua SS
    Curr Microbiol; 2010 Jul; 61(1):57-63. PubMed ID: 20049598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus.
    Hua SS; Beck JJ; Sarreal SB; Gee W
    Mycotoxin Res; 2014 May; 30(2):71-8. PubMed ID: 24504634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development of a qPCR Assay to Measure
    Mitema A; Okoth S; Rafudeen SM
    Toxins (Basel); 2019 Mar; 11(3):. PubMed ID: 30934573
    [No Abstract]   [Full Text] [Related]  

  • 8. Biocontrol potential of native yeast strains against
    Moradi M; Rohani M; Fani SR; Mosavian MTH; Probst C; Khodaygan P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Nov; 37(11):1963-1973. PubMed ID: 32897822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus.
    Abdel-Kareem MM; Rasmey AM; Zohri AA
    Lett Appl Microbiol; 2019 Feb; 68(2):104-111. PubMed ID: 30554415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the dichlorvos-ammonia (DV-AM) method for the visual detection of aflatoxigenic fungi.
    Yabe K; Hatabayashi H; Ikehata A; Zheng Y; Kushiro M
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10681-94. PubMed ID: 26300294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy.
    Moore GG; Lebar MD; Carter-Wientjes CH
    J Appl Microbiol; 2019 Apr; 126(4):1257-1264. PubMed ID: 30548988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of bacterial antagonists of Aspergillus flavus from almonds.
    Palumbo JD; Baker JL; Mahoney NE
    Microb Ecol; 2006 Jul; 52(1):45-52. PubMed ID: 16767519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production.
    Yang M; Lu L; Pang J; Hu Y; Guo Q; Li Z; Wu S; Liu H; Wang C
    J Microbiol; 2019 May; 57(5):396-404. PubMed ID: 31062286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize.
    Abbas HK; Zablotowicz RM; Horn BW; Phillips NA; Johnson BJ; Jin X; Abel CA
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Feb; 28(2):198-208. PubMed ID: 21259141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus.
    Accinelli C; Saccà ML; Abbas HK; Zablotowicz RM; Wilkinson JR
    Bioresour Technol; 2009 Sep; 100(17):3997-4004. PubMed ID: 19349167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of sclerotia by aflatoxigenic and nonaflatoxigenic strains of Aspergillus flavus and A. parasiticus.
    Bennett JW; Horowitz PC; Lee LS
    Mycologia; 1979; 71(2):415-22. PubMed ID: 114828
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi.
    Mellon JE; Dowd MK; Beltz SB
    J Appl Microbiol; 2013 Jul; 115(1):179-86. PubMed ID: 23594138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of aflatoxin biosynthesis. 2 Comparative study of tricarboxylic acid cycle in aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus.
    Gupta SK; Maggon KK; Venkitasubramanian TA
    Microbios; 1977; 19(75):7-15. PubMed ID: 99644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of
    Lim SY; Son YE; Lee DH; Eom TJ; Kim MJ; Park HS
    Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31569747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient effects on biocontrol of Penicillium roqueforti by Pichia anomala J121 during airtight storage of wheat.
    Druvefors UA; Passoth V; Schnürer J
    Appl Environ Microbiol; 2005 Apr; 71(4):1865-9. PubMed ID: 15812013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.