BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 20680845)

  • 21. Zinc finger peptides for the regulation of gene expression.
    Klug A
    J Mol Biol; 1999 Oct; 293(2):215-8. PubMed ID: 10529348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases.
    Strange TL; Petolino JF
    Methods Mol Biol; 2012; 847():391-7. PubMed ID: 22351024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium ion responsive DNA binding in a zinc finger fusion protein.
    Onoda A; Arai N; Shimazu N; Yamamoto H; Yamamura T
    J Am Chem Soc; 2005 Nov; 127(47):16535-40. PubMed ID: 16305242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain.
    Razmiafshari M; Zawia NH
    Toxicol Appl Pharmacol; 2000 Jul; 166(1):1-12. PubMed ID: 10873713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based design of a dimeric zinc finger protein.
    Pomerantz JL; Wolfe SA; Pabo CO
    Biochemistry; 1998 Jan; 37(4):965-70. PubMed ID: 9467467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc-finger nucleases meet iPS cells: Zinc positive: tailored genome engineering meets reprogramming.
    Cathomen T; Schambach A
    Gene Ther; 2010 Jan; 17(1):1-3. PubMed ID: 19907499
    [No Abstract]   [Full Text] [Related]  

  • 27. Potential application of FoldX force field based protein modeling in zinc finger nucleases design.
    He Z; Mei G; Zhao C; Chen Y
    Sci China Life Sci; 2011 May; 54(5):442-9. PubMed ID: 21455692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adding fingers to an engineered zinc finger nuclease can reduce activity.
    Shimizu Y; Şöllü C; Meckler JF; Adriaenssens A; Zykovich A; Cathomen T; Segal DJ
    Biochemistry; 2011 Jun; 50(22):5033-41. PubMed ID: 21528840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers.
    Laity JH; Dyson HJ; Wright PE
    J Mol Biol; 2000 Jan; 295(4):719-27. PubMed ID: 10656784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exchange of histidine spacing between Sp1 and GLI zinc fingers: distinct effect of histidine spacing-linker region on DNA binding.
    Shiraishi Y; Imanishi M; Sugiura Y
    Biochemistry; 2004 May; 43(20):6352-9. PubMed ID: 15147220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of polyzinc finger peptides with structured linkers.
    Moore M; Choo Y; Klug A
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1432-6. PubMed ID: 11171968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of length and position of an extended linker on sequence-selective DNA recognition of zinc finger peptides.
    Nomura W; Sugiura Y
    Biochemistry; 2003 Dec; 42(50):14805-13. PubMed ID: 14674754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced cleavage of double-stranded DNA by artificial zinc-finger nuclease sandwiched between two zinc-finger proteins.
    Mineta Y; Okamoto T; Takenaka K; Doi N; Aoyama Y; Sera T
    Biochemistry; 2008 Nov; 47(47):12257-9. PubMed ID: 18980382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel zinc finger nuclease created by combining the Cys(2)His(2)- and His(4)-type zinc finger domains.
    Negi S; Umeda Y; Masuyama S; Kano K; Sugiura Y
    Bioorg Med Chem Lett; 2009 May; 19(10):2789-91. PubMed ID: 19359170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural studies on a protein-binding zinc-finger domain of Eos reveal both similarities and differences to classical zinc fingers.
    Westman BJ; Perdomo J; Matthews JM; Crossley M; Mackay JP
    Biochemistry; 2004 Oct; 43(42):13318-27. PubMed ID: 15491138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of zinc finger nuclease-associated toxicity.
    Cornu TI; Cathomen T
    Methods Mol Biol; 2010; 649():237-45. PubMed ID: 20680838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA.
    Neely LS; Lee BM; Xu J; Wright PE; Gottesfeld JM
    J Mol Biol; 1999 Aug; 291(3):549-60. PubMed ID: 10448036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins.
    Razmiafshari M; Kao J; d'Avignon A; Zawia NH
    Toxicol Appl Pharmacol; 2001 Apr; 172(1):1-10. PubMed ID: 11264017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and testing of zinc finger nucleases for use in mammalian cells.
    Porteus M
    Methods Mol Biol; 2008; 435():47-61. PubMed ID: 18370067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.