These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20681433)
1. The effect of emission from coal combustion in nonindustrial sources on deposition of sulfur and oxidized nitrogen in Poland. Kryza M; Werner M; Błaś M; Dore AJ; Sobik M J Air Waste Manag Assoc; 2010 Jul; 60(7):856-66. PubMed ID: 20681433 [TBL] [Abstract][Full Text] [Related]
2. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology. Kryza M; Dore AJ; Błaś M; Sobik M J Environ Manage; 2011 Apr; 92(4):1225-36. PubMed ID: 21208722 [TBL] [Abstract][Full Text] [Related]
3. The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds. Kryza M; Werner M; Dore AJ; Błaś M; Sobik M J Environ Manage; 2012 Oct; 109():70-9. PubMed ID: 22687633 [TBL] [Abstract][Full Text] [Related]
4. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Wang S; Luo K; Wang X; Sun Y Environ Pollut; 2016 Feb; 209():107-13. PubMed ID: 26650082 [TBL] [Abstract][Full Text] [Related]
5. Active methods of mercury removal from flue gases. Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741 [TBL] [Abstract][Full Text] [Related]
6. Emissions of sulfur trioxide from coal-fired power plants. Srivastava RK; Miller CA; Erickson C; Jambhekar R J Air Waste Manag Assoc; 2004 Jun; 54(6):750-62. PubMed ID: 15242154 [TBL] [Abstract][Full Text] [Related]
7. Atmospheric aerosol over Vermont: chemical composition and sources. Polissar AV; Hopke PK; Poirot RL Environ Sci Technol; 2001 Dec; 35(23):4604-21. PubMed ID: 11770762 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal. Roy B; Chen L; Bhattacharya S Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169 [TBL] [Abstract][Full Text] [Related]
9. [Inventories of atmospheric arsenic emissions from coal combustion in China, 2005]. Tian HZ; Qu YP Huan Jing Ke Xue; 2009 Apr; 30(4):956-62. PubMed ID: 19544989 [TBL] [Abstract][Full Text] [Related]
10. Nonlinearities in source receptor relationships for sulfur and nitrogen compounds. Fowler D; Muller J; Smith RI; Cape JN; Erisman JW Ambio; 2005 Feb; 34(1):41-6. PubMed ID: 15789517 [TBL] [Abstract][Full Text] [Related]
11. The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries. Nyashina GS; Strizhak PA Environ Pollut; 2018 Nov; 242(Pt A):31-41. PubMed ID: 30373034 [TBL] [Abstract][Full Text] [Related]
12. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. Junninen H; Mønster J; Rey M; Cancelinha J; Douglas K; Duane M; Forcina V; Müller A; Lagler F; Marelli L; Borowiak A; Niedzialek J; Paradiz B; Mira-Salama D; Jimenez J; Hansen U; Astorga C; Stanczyk K; Viana M; Querol X; Duvall RM; Norris GA; Tsakovski S; Wåhlin P; Horák J; Larsen BR Environ Sci Technol; 2009 Oct; 43(20):7964-70. PubMed ID: 19921921 [TBL] [Abstract][Full Text] [Related]
13. Atmospheric particulate mercury at the urban and forest sites in central Poland. Siudek P; Frankowski M; Siepak J Environ Sci Pollut Res Int; 2016 Feb; 23(3):2341-52. PubMed ID: 26411447 [TBL] [Abstract][Full Text] [Related]
14. Anthropogenic emissions from coal-water slurry combustion: Influence of component composition and registration methods. Dorokhov VV; Nyashina GS; Strizhak PA Environ Res; 2023 Apr; 223():115444. PubMed ID: 36758921 [TBL] [Abstract][Full Text] [Related]
15. Comparison of PM Pokorná P; Schwarz J; Krejci R; Swietlicki E; Havránek V; Ždímal V Environ Pollut; 2018 Oct; 241():841-851. PubMed ID: 29909310 [TBL] [Abstract][Full Text] [Related]
16. Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals. Nyashina GS; Kuznetsov GV; Strizhak PA Environ Pollut; 2020 Mar; 258():113682. PubMed ID: 31812529 [TBL] [Abstract][Full Text] [Related]
17. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China. Tang S; Feng X; Qiu J; Yin G; Yang Z Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388 [TBL] [Abstract][Full Text] [Related]
18. Contribution of Poland to Atmospheric Nitrogen Deposition to the Baltic Sea. Bartnicki J; Semeena VS; Mazur A; Zwoździak J Water Air Soil Pollut; 2018; 229(11):353. PubMed ID: 30416219 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Zhang Y; Schauer JJ; Zhang Y; Zeng L; Wei Y; Liu Y; Shao M Environ Sci Technol; 2008 Jul; 42(14):5068-73. PubMed ID: 18754349 [TBL] [Abstract][Full Text] [Related]
20. Effective incineration of fuel-waste slurries from several related industries. Nyashina GS; Vershinina KY; Shlegel NE; Strizhak PA Environ Res; 2019 Sep; 176():108559. PubMed ID: 31271920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]