These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20681518)

  • 1. Nonplanar, noninnocent, and chiral: a strongly saddled metallocorrole.
    Alemayehu AB; Hansen LK; Ghosh A
    Inorg Chem; 2010 Sep; 49(17):7608-10. PubMed ID: 20681518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.
    Thomas KE; Alemayehu AB; Conradie J; Beavers CM; Ghosh A
    Acc Chem Res; 2012 Aug; 45(8):1203-14. PubMed ID: 22444488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Noninnocence in Coinage Metal Corroles: A Silver Knife-Edge.
    Thomas KE; Vazquez-Lima H; Fang Y; Song Y; Gagnon KJ; Beavers CM; Kadish KM; Ghosh A
    Chemistry; 2015 Nov; 21(47):16839-47. PubMed ID: 26345592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper corroles are inherently saddled.
    Alemayehu AB; Gonzalez E; Hansen LK; Ghosh A
    Inorg Chem; 2009 Aug; 48(16):7794-9. PubMed ID: 19618938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic absorption, resonance Raman, and electrochemical studies of planar and saddled copper(III) meso-triarylcorroles. Highly substituent-sensitive Soret bands as a distinctive feature of high-valent transition metal corroles.
    Wasbotten IH; Wondimagegn T; Ghosh A
    J Am Chem Soc; 2002 Jul; 124(27):8104-16. PubMed ID: 12095356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seven Clues to Ligand Noninnocence: The Metallocorrole Paradigm.
    Ganguly S; Ghosh A
    Acc Chem Res; 2019 Jul; 52(7):2003-2014. PubMed ID: 31243969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structures of free-base corroles: nonplanarity, chirality, and enantiomerization.
    Capar J; Conradie J; Beavers CM; Ghosh A
    J Phys Chem A; 2015 Apr; 119(14):3452-7. PubMed ID: 25819028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved syntheses of β-octabromo-meso-triarylcorrole derivatives.
    Capar J; Berg S; Thomas KE; Beavers CM; Gagnon KJ; Ghosh A
    J Inorg Biochem; 2015 Dec; 153():162-166. PubMed ID: 26354820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Structure of Copper and μ-Oxodiiron Octafluorocorrole Derivatives: Insights into Ligand Noninnocence.
    Thomas KE; Settineri NS; Teat SJ; Steene E; Ghosh A
    ACS Omega; 2020 May; 5(17):10176-10182. PubMed ID: 32391505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper beta-Octakis(trifluoromethyl)corroles: new paradigms for ligand substituent effects in transition metal complexes.
    Thomas KE; Wasbotten IH; Ghosh A
    Inorg Chem; 2008 Nov; 47(22):10469-78. PubMed ID: 18928275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undecaphenylcorroles.
    Berg S; Thomas KE; Beavers CM; Ghosh A
    Inorg Chem; 2012 Sep; 51(18):9911-6. PubMed ID: 22954313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand noninnocence in FeNO corroles: insights from β-octabromocorrole complexes.
    Norheim HK; Capar J; Einrem RF; Gagnon KJ; Beavers CM; Vazquez-Lima H; Ghosh A
    Dalton Trans; 2016 Jan; 45(2):681-9. PubMed ID: 26619363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity in expanded porphyrins.
    Misra R; Chandrashekar TK
    Acc Chem Res; 2008 Feb; 41(2):265-79. PubMed ID: 18281947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy.
    Ma JG; Laberge M; Song XZ; Jentzen W; Jia SL; Zhang J; Vanderkooi JM; Shelnutt JA
    Biochemistry; 1998 Apr; 37(15):5118-28. PubMed ID: 9548742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the red shifts in the optical absorption bands of nonplanar tetraalkylporphyrins.
    Haddad RE; Gazeau S; Pécaut J; Marchon JC; Medforth CJ; Shelnutt JA
    J Am Chem Soc; 2003 Feb; 125(5):1253-68. PubMed ID: 12553827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and atructure of [meso-triarylcorrolato]silver(III).
    Brückner C; Barta CA; Briñas RP; Krause Bauer JA
    Inorg Chem; 2003 Mar; 42(5):1673-80. PubMed ID: 12611538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, NMR, and EPR studies of S = (1)/(2) and S = (3)/(2) Fe(III) bis(4-cyanopyridine) complexes of dodecasubstituted porphyrins.
    Yatsunyk LA; Walker FA
    Inorg Chem; 2004 Jan; 43(2):757-77. PubMed ID: 14731040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR and structural investigations of a nonplanar iron corrolate: modified patterns of spin delocalization and coupling in a slightly saddled chloroiron(III) corrolate radical.
    Nardis S; Paolesse R; Licoccia S; Fronczek FR; Vicente MG; Shokhireva TK; Cai S; Walker FA
    Inorg Chem; 2005 Oct; 44(20):7030-46. PubMed ID: 16180865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Arylethynyl substituted silver corrole complexes.
    Stefanelli M; Ricci A; Chiarini M; Lo Sterzo C; Berionni Berna B; Pomarico G; Sabuzi F; Galloni P; Fronczek FR; Smith KM; Wang L; Ou Z; Kadish KM; Paolesse R
    Dalton Trans; 2019 Sep; 48(36):13589-13598. PubMed ID: 31478049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.