These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 20681521)
1. Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. Baldwin BR; Biernacki A; Blair J; Purchase MP; Baker JM; Sublette K; Davis G; Ogles D Environ Sci Technol; 2010 Sep; 44(17):6829-34. PubMed ID: 20681521 [TBL] [Abstract][Full Text] [Related]
2. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Baldwin BR; Nakatsu CH; Nies L Water Res; 2008 Feb; 42(3):723-31. PubMed ID: 17707876 [TBL] [Abstract][Full Text] [Related]
3. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. Baldwin BR; Nakatsu CH; Nebe J; Wickham GS; Parks C; Nies L J Hazard Mater; 2009 Apr; 163(2-3):524-30. PubMed ID: 18706759 [TBL] [Abstract][Full Text] [Related]
4. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. Nebe J; Baldwin BR; Kassab RL; Nies L; Nakatsu CH Environ Sci Technol; 2009 Mar; 43(6):2029-34. PubMed ID: 19368209 [TBL] [Abstract][Full Text] [Related]
5. A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. Yeh CH; Lin CW; Wu CH J Hazard Mater; 2010 Jun; 178(1-3):74-80. PubMed ID: 20122795 [TBL] [Abstract][Full Text] [Related]
6. The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Alvarez PJ; Hunt CS Rev Latinoam Microbiol; 2002; 44(2):83-104. PubMed ID: 17063777 [TBL] [Abstract][Full Text] [Related]
7. Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Táncsics A; Szoboszlay S; Szabó I; Farkas M; Kovács B; Kukolya J; Mayer Z; Kriszt B Environ Sci Technol; 2012 Jan; 46(1):232-40. PubMed ID: 22091737 [TBL] [Abstract][Full Text] [Related]
8. Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. Daghio M; Tatangelo V; Franzetti A; Gandolfi I; Papacchini M; Careghini A; Sezenna E; Saponaro S; Bestetti G Chemosphere; 2015 Jul; 130():34-9. PubMed ID: 25747304 [TBL] [Abstract][Full Text] [Related]
9. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study. Chen YD; Barker JF; Gui L J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687 [TBL] [Abstract][Full Text] [Related]
10. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Takahata Y; Kasai Y; Hoaki T; Watanabe K Appl Microbiol Biotechnol; 2006 Dec; 73(3):713-22. PubMed ID: 16957896 [TBL] [Abstract][Full Text] [Related]
11. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Kao CM; Chen CY; Chen SC; Chien HY; Chen YL Chemosphere; 2008 Feb; 70(8):1492-9. PubMed ID: 17950413 [TBL] [Abstract][Full Text] [Related]
12. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. Raynal M; Pruden A Biodegradation; 2008 Apr; 19(2):269-82. PubMed ID: 17562189 [TBL] [Abstract][Full Text] [Related]
13. Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: implications for natural attenuation rates. Jeong SW; Kampbell DH; An YJ; Henry BM J Environ Monit; 2005 Nov; 7(11):1099-104. PubMed ID: 16252060 [TBL] [Abstract][Full Text] [Related]
14. Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites. Chen KF; Kao CM; Wang JY; Chen TY; Chien CC J Hazard Mater; 2005 Oct; 125(1-3):10-6. PubMed ID: 16046063 [TBL] [Abstract][Full Text] [Related]
15. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Hendrickx B; Junca H; Vosahlova J; Lindner A; Rüegg I; Bucheli-Witschel M; Faber F; Egli T; Mau M; Schlömann M; Brennerova M; Brenner V; Pieper DH; Top EM; Dejonghe W; Bastiaens L; Springael D J Microbiol Methods; 2006 Feb; 64(2):250-65. PubMed ID: 15949858 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389 [TBL] [Abstract][Full Text] [Related]
17. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. Spence MJ; Bottrell SH; Thornton SF; Richnow HH; Spence KH J Contam Hydrol; 2005 Sep; 79(1-2):67-88. PubMed ID: 16076511 [TBL] [Abstract][Full Text] [Related]
18. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants. Wang X; Deshusses MA Biodegradation; 2007 Feb; 18(1):37-50. PubMed ID: 16733621 [TBL] [Abstract][Full Text] [Related]
19. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Chen KF; Kao CM; Chen CW; Surampalli RY; Lee MS J Environ Sci (China); 2010; 22(6):864-71. PubMed ID: 20923098 [TBL] [Abstract][Full Text] [Related]
20. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Mesarch MB; Nakatsu CH; Nies L Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]