These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20681548)

  • 1. Lithium insertion in silicon nanowires: an ab initio study.
    Zhang Q; Zhang W; Wan W; Cui Y; Wang E
    Nano Lett; 2010 Sep; 10(9):3243-9. PubMed ID: 20681548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study.
    Salazar F; Trejo-Baños A; Miranda A; Pérez LA; Cruz-Irisson M
    J Mol Model; 2019 Nov; 25(11):338. PubMed ID: 31705205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.
    Tritsaris GA; Kaxiras E; Meng S; Wang E
    Nano Lett; 2013 May; 13(5):2258-63. PubMed ID: 23611247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-stopping effects of lithium penetration into silicon nanowires.
    Lang L; Dong C; Chen G; Yang J; Gu X; Xiang H; Wu R; Gong X
    Nanoscale; 2013 Dec; 5(24):12394-8. PubMed ID: 24162503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium incorporation at the MoS₂/graphene interface: an ab initio investigation.
    Miwa RH; Scopel WL
    J Phys Condens Matter; 2013 Nov; 25(44):445301. PubMed ID: 24113295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites.
    Legrain F; Manzhos S
    J Chem Phys; 2017 Jan; 146(3):034706. PubMed ID: 28109222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling diffusion of lithium in silicon nanostructures.
    Chan TL; Chelikowsky JR
    Nano Lett; 2010 Mar; 10(3):821-5. PubMed ID: 20121259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically doped radial junction characteristics in silicon nanowires.
    Ng MF; Tong SW
    Nano Lett; 2012 Dec; 12(12):6133-8. PubMed ID: 23137035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Li adsorption and diffusion in single-walled silicon nanotubes: an ab initio study.
    Kulish VV; Ng MF; Malyi OI; Wu P; Chen Z
    Chemphyschem; 2013 Apr; 14(6):1161-7. PubMed ID: 23564742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review of silicon nanowire electrodes and their energy storage capacities in Li-ion cells.
    Yang C; Chandran KSR
    RSC Adv; 2023 Jan; 13(6):3947-3957. PubMed ID: 36756585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires.
    Ogata K; Sutter E; Zhu X; Hofmann S
    Nanotechnology; 2011 Sep; 22(36):365305. PubMed ID: 21841219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires.
    Zhu J; Guo M; Liu Y; Shi X; Fan F; Gu M; Yang H
    ACS Appl Mater Interfaces; 2019 May; 11(19):17313-17320. PubMed ID: 31002223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional etching profiles and surface speciations (via attenuated total reflection-fourier transform infrared spectroscopy) of silicon nanowires in NH4F-buffered HF solutions: a double passivation model.
    Teo BK; Chen WW; Sun XH; Wang SD; Lee ST
    J Phys Chem B; 2005 Nov; 109(46):21716-24. PubMed ID: 16853821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanowires for biosensing, energy storage, and conversion.
    Wang Y; Wang T; Da P; Xu M; Wu H; Zheng G
    Adv Mater; 2013 Oct; 25(37):5177-95. PubMed ID: 23828226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theory study of defective silicenes as anode materials for lithium ion batteries.
    Momeni MJ; Chowdhury C; Mousavi-Khoshdel M
    J Mol Graph Model; 2017 Nov; 78():206-212. PubMed ID: 29100165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel approach for improving the performance of Si-based anodes in lithium-ion batteries.
    Sadeghipari M; Mashayekhi A; Mohajerzadeh S
    Nanotechnology; 2018 Feb; 29(5):055403. PubMed ID: 29231184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.