These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20681561)

  • 1. Microfabrication of carbon structures by pattern miniaturization in resorcinol-formaldehyde gel.
    Sharma CS; Verma A; Kulkarni MM; Upadhyay DK; Sharma A
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2193-7. PubMed ID: 20681561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating.
    Tao Y; Hattori Y; Matumoto A; Kanoh H; Kaneko K
    J Phys Chem B; 2005 Jan; 109(1):194-9. PubMed ID: 16851004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in tailoring resorcinol-formaldehyde organic and carbon gels.
    Elkhatat AM; Al-Muhtaseb SA
    Adv Mater; 2011 Jul; 23(26):2887-903. PubMed ID: 21608048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules.
    Fuertes AB; Valle-Vigón P; Sevilla M
    Chem Commun (Camb); 2012 Jun; 48(49):6124-6. PubMed ID: 22582187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon xerogel microspheres and monoliths from resorcinol-formaldehyde mixtures with varying dilution ratios: preparation, surface characteristics, and electrochemical double-layer capacitances.
    Zapata-Benabithe Z; Carrasco-Marín F; de Vicente J; Moreno-Castilla C
    Langmuir; 2013 May; 29(20):6166-73. PubMed ID: 23617279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres.
    Liu J; Qiao SZ; Liu H; Chen J; Orpe A; Zhao D; Lu GQ
    Angew Chem Int Ed Engl; 2011 Jun; 50(26):5947-51. PubMed ID: 21630403
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrochemical Properties of Carbon Aerogel Electrodes: Dependence on Synthesis Temperature.
    Malkova AN; Sipyagina NA; Gozhikova IO; Dobrovolsky YA; Konev DV; Baranchikov AE; Ivanova OS; Ukshe AE; Lermontov SA
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31731434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From MEMS to NEMS with carbon.
    Wang C; Madou M
    Biosens Bioelectron; 2005 Apr; 20(10):2181-7. PubMed ID: 15741096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of resorcinol-tannin-formaldehyde copolymer resins prepared from the bark extracts of Taiwan acacia and China fir.
    Lee WJ; Lan WC
    Bioresour Technol; 2006 Jan; 97(2):257-64. PubMed ID: 16171683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers.
    Shady SA
    J Hazard Mater; 2009 Aug; 167(1-3):947-52. PubMed ID: 19303707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography.
    Liu X; Wang Q; Qin J; Lin B
    Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a feasible and scalable production of bio-xerogels.
    Rey-Raap N; Szczurek A; Fierro V; Menéndez JA; Arenillas A; Celzard A
    J Colloid Interface Sci; 2015 Oct; 456():138-44. PubMed ID: 26119083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration.
    Li J; Lu R; Dou B; Ma C; Hu Q; Liang Y; Wu F; Qiao S; Hao Z
    Environ Sci Technol; 2012 Nov; 46(22):12648-54. PubMed ID: 23092151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of texture and surface chemistry of carbon xerogels.
    Mahata N; Pereira MF; Suárez-García F; Martínez-Alonso A; Tascón JM; Figueiredo JL
    J Colloid Interface Sci; 2008 Aug; 324(1-2):150-5. PubMed ID: 18533175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and static light scattering study on the sol-gel transition of resorcinol-formaldehyde aqueous solution.
    Yamamoto T; Yoshida T; Suzuki T; Mukai SR; Tamon H
    J Colloid Interface Sci; 2002 Jan; 245(2):391-6. PubMed ID: 16290373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAXS Study on Gelation Process in Preparation of Resorcinol-Formaldehyde Aerogel.
    Tamon H; Ishizaka H
    J Colloid Interface Sci; 1998 Oct; 206(2):577-582. PubMed ID: 9756670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption.
    Rodríguez E; Encinas A; Masa FJ; Beltrán FJ
    Chemosphere; 2008 Feb; 70(8):1366-74. PubMed ID: 17977575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth.
    Bayram E; Hoda N; Ayranci E
    J Hazard Mater; 2009 Sep; 168(2-3):1459-66. PubMed ID: 19345487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resorcinol-formaldehyde resin "Russian Red" endodontic therapy.
    Schwandt NW; Gound TG
    J Endod; 2003 Jul; 29(7):435-7. PubMed ID: 12877257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.