These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 20681592)
1. Precisely controlled growth of heterostructured nanocrystals via a dissolution-attachment process. Shen S; Tang Z; Liu Q; Wang X Inorg Chem; 2010 Sep; 49(17):7799-807. PubMed ID: 20681592 [TBL] [Abstract][Full Text] [Related]
2. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds. Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814 [TBL] [Abstract][Full Text] [Related]
4. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739 [TBL] [Abstract][Full Text] [Related]
5. Structural evolution in the nanoscale diffusion process: a Au-Sn bimetallic system. Yu K; Yao T; Pan Z; Wei S; Xie Y Dalton Trans; 2009 Dec; (46):10353-8. PubMed ID: 19921072 [TBL] [Abstract][Full Text] [Related]
6. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction. Weiner RG; Kunz MR; Skrabalak SE Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803 [TBL] [Abstract][Full Text] [Related]
7. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. Kuo CH; Yang YC; Gwo S; Huang MH J Am Chem Soc; 2011 Feb; 133(4):1052-7. PubMed ID: 21174406 [TBL] [Abstract][Full Text] [Related]
8. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction. Li X; Liu J; He W; Huang Q; Yang H J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. Lim B; Kobayashi H; Yu T; Wang J; Kim MJ; Li ZY; Rycenga M; Xia Y J Am Chem Soc; 2010 Mar; 132(8):2506-7. PubMed ID: 20136138 [TBL] [Abstract][Full Text] [Related]
10. Shaping binary metal nanocrystals through epitaxial seeded growth. Habas SE; Lee H; Radmilovic V; Somorjai GA; Yang P Nat Mater; 2007 Sep; 6(9):692-7. PubMed ID: 17618289 [TBL] [Abstract][Full Text] [Related]
11. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. Chen Y; Johnson E; Peng X J Am Chem Soc; 2007 Sep; 129(35):10937-47. PubMed ID: 17696349 [TBL] [Abstract][Full Text] [Related]
12. Sequential Growth of High Quality Sub-10 nm Core-Shell Nanocrystals: Understanding the Nucleation and Growth Process Using Dynamic Light Scattering. Zhao ML; Hao LN; Zhang J; Zhang CY; Lu Y; Qian HS Langmuir; 2019 Jan; 35(2):489-494. PubMed ID: 30561206 [TBL] [Abstract][Full Text] [Related]
13. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366 [TBL] [Abstract][Full Text] [Related]
14. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Li JJ; Wang YA; Guo W; Keay JC; Mishima TD; Johnson MB; Peng X J Am Chem Soc; 2003 Oct; 125(41):12567-75. PubMed ID: 14531702 [TBL] [Abstract][Full Text] [Related]
15. Au nanocrystal growth on nanotubes controlled by conformations and charges of sequenced peptide templates. Djalali R; Chen YF; Matsui H J Am Chem Soc; 2003 May; 125(19):5873-9. PubMed ID: 12733928 [TBL] [Abstract][Full Text] [Related]
16. Electron microscopy studies of electron-beam sensitive PbTe-based nanostructures. Falqui A; Bertoni G; Genovese A; Marras S; Malerba M; Franchini IR; Manna L Microsc Res Tech; 2010 Oct; 73(10):944-51. PubMed ID: 20232366 [TBL] [Abstract][Full Text] [Related]
17. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. Lee WR; Kim MG; Choi JR; Park JI; Ko SJ; Oh SJ; Cheon J J Am Chem Soc; 2005 Nov; 127(46):16090-7. PubMed ID: 16287295 [TBL] [Abstract][Full Text] [Related]
18. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. Wang D; Li Y J Am Chem Soc; 2010 May; 132(18):6280-1. PubMed ID: 20402502 [TBL] [Abstract][Full Text] [Related]
19. An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals. Yang D; Liu H; Zheng Z; Yuan Y; Zhao JC; Waclawik ER; Ke X; Zhu H J Am Chem Soc; 2009 Dec; 131(49):17885-93. PubMed ID: 19911792 [TBL] [Abstract][Full Text] [Related]
20. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Kwon SG; Hyeon T Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]