These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 20681658)
1. Sugar conversion induced by the application of heat to grape must. Falcone PM; Tagliazucchi D; Verzelloni E; Giudici P J Agric Food Chem; 2010 Aug; 58(15):8680-91. PubMed ID: 20681658 [TBL] [Abstract][Full Text] [Related]
2. Changes in the chemical composition of reduced cooked musts during the heating process. Cocchi M; Consonni R; Durante C; Grandi M; Manzini S; Marchetti A; Sighinolfi S J Agric Food Chem; 2008 Aug; 56(15):6397-407. PubMed ID: 18598041 [TBL] [Abstract][Full Text] [Related]
3. Role of different factors affecting the formation of 5-hydroxymethyl-2-furancarboxaldehyde in heated grape must. Muratore G; Licciardello F; Restuccia C; Puglisi ML; Giudici P J Agric Food Chem; 2006 Feb; 54(3):860-3. PubMed ID: 16448195 [TBL] [Abstract][Full Text] [Related]
4. Color and polyphenolic stability in extracts produced from muscadine grape (Vitis rotundifolia) pomace. Cardona JA; Lee JH; Talcott ST J Agric Food Chem; 2009 Sep; 57(18):8421-5. PubMed ID: 19754172 [TBL] [Abstract][Full Text] [Related]
5. Effect of skin contact and pressure on the composition of Sauvignon Blanc must. Maggu M; Winz R; Kilmartin PA; Trought MC; Nicolau L J Agric Food Chem; 2007 Dec; 55(25):10281-8. PubMed ID: 18020411 [TBL] [Abstract][Full Text] [Related]
6. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. Thimothe J; Bonsi IA; Padilla-Zakour OI; Koo H J Agric Food Chem; 2007 Dec; 55(25):10200-7. PubMed ID: 17999462 [TBL] [Abstract][Full Text] [Related]
7. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must. Peinado RA; Moreno JJ; Medina M; Mauricio JC J Agric Food Chem; 2005 Feb; 53(4):1017-21. PubMed ID: 15713014 [TBL] [Abstract][Full Text] [Related]
8. Formation of furan and methylfuran by maillard-type reactions in model systems and food. Limacher A; Kerler J; Davidek T; Schmalzried F; Blank I J Agric Food Chem; 2008 May; 56(10):3639-47. PubMed ID: 18439018 [TBL] [Abstract][Full Text] [Related]
9. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. Yilmaz Y; Toledo RT J Agric Food Chem; 2004 Jan; 52(2):255-60. PubMed ID: 14733505 [TBL] [Abstract][Full Text] [Related]
10. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating. Mishra DK; Dolan KD; Yang L J Food Sci; 2008 Jan; 73(1):E9-15. PubMed ID: 18211351 [TBL] [Abstract][Full Text] [Related]
11. Application of ultrasound in grape mash treatment in juice processing. Lieu le N; Le VV Ultrason Sonochem; 2010 Jan; 17(1):273-9. PubMed ID: 19481968 [TBL] [Abstract][Full Text] [Related]
12. Molecular size and molecular size distribution affecting traditional balsamic vinegar aging. Falcone PM; Giudici P J Agric Food Chem; 2008 Aug; 56(16):7057-66. PubMed ID: 18656930 [TBL] [Abstract][Full Text] [Related]
13. Effect of flash release and pectinolytic enzyme treatments on wine polysaccharide composition. Doco T; Williams P; Cheynier V J Agric Food Chem; 2007 Aug; 55(16):6643-9. PubMed ID: 17629303 [TBL] [Abstract][Full Text] [Related]
14. Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Luque-Rodríguez JM; Luque de Castro MD; Pérez-Juan P Bioresour Technol; 2007 Oct; 98(14):2705-13. PubMed ID: 17092712 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant properties of kilned and roasted malts. Samaras TS; Camburn PA; Chandra SX; Gordon MH; Ames JM J Agric Food Chem; 2005 Oct; 53(20):8068-74. PubMed ID: 16190672 [TBL] [Abstract][Full Text] [Related]
16. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture. Lai KP; Dolan KD; Ng PK J Food Sci; 2009 Jun; 74(5):E241-9. PubMed ID: 19646039 [TBL] [Abstract][Full Text] [Related]
17. Effect of flash release treatment on phenolic extraction and wine composition. Morel-Salmi C; Souquet JM; Bes M; Cheynier V J Agric Food Chem; 2006 Jun; 54(12):4270-6. PubMed ID: 16756356 [TBL] [Abstract][Full Text] [Related]
18. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). Jensen JS; Demiray S; Egebo M; Meyer AS J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238 [TBL] [Abstract][Full Text] [Related]
19. Subcritical solvent extraction of procyanidins from dried red grape pomace. Monrad JK; Howard LR; King JW; Srinivas K; Mauromoustakos A J Agric Food Chem; 2010 Apr; 58(7):4014-21. PubMed ID: 20020688 [TBL] [Abstract][Full Text] [Related]
20. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Borrega M; Nieminen K; Sixta H Bioresour Technol; 2011 Nov; 102(22):10724-32. PubMed ID: 21967712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]