These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 2068224)
1. Compton scattering profile for in vivo XRF techniques. Tartari A; Baraldi C; Felsteiner J; Casnati E Phys Med Biol; 1991 May; 36(5):567-78. PubMed ID: 2068224 [TBL] [Abstract][Full Text] [Related]
2. Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone. Ao Q; Lee SH; Gardner RP Appl Radiat Isot; 1997; 48(10-12):1403-12. PubMed ID: 9463866 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals. O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014 [TBL] [Abstract][Full Text] [Related]
4. The Monte Carlo modelling of in vivo x-ray fluorescence measurement of lead in tissue. Wallace JD Phys Med Biol; 1994 Oct; 39(10):1745-56. PubMed ID: 15551542 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation of multiple scattering in Compton spectroscopy. Persliden J Acta Radiol; 1992 Jul; 33(4):384-7. PubMed ID: 1633052 [TBL] [Abstract][Full Text] [Related]
6. A Monte Carlo study of multiple scatter effects in Compton scatter densitometry. Speller RD; Horrocks JA Med Phys; 1988; 15(5):707-12. PubMed ID: 3185406 [TBL] [Abstract][Full Text] [Related]
7. Modification to the Monte Carlo N-particle code for simulating direct, in vivo measurement of stable lead in bone. Lodwick CJ; Spitz HB Health Phys; 2008 Jun; 94(6):519-26. PubMed ID: 18469585 [TBL] [Abstract][Full Text] [Related]
8. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Carlsson GA; Carlsson CA; Berggren KF; Ribberfors R Med Phys; 1982; 9(6):868-79. PubMed ID: 7162473 [TBL] [Abstract][Full Text] [Related]
9. [Estimation of scatter component in SPECT planar image using a Monte Carlo method]. Ogawa K; Harata Y; Ichihara T; Kubo A; Hashimoto S Kaku Igaku; 1990 May; 27(5):467-76. PubMed ID: 2395230 [TBL] [Abstract][Full Text] [Related]
10. Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations. Tartari A; Casnati E; Fernandez JE; Felsteiner J; Baraldi C Phys Med Biol; 1994 Feb; 39(2):219-30. PubMed ID: 15552121 [TBL] [Abstract][Full Text] [Related]
11. The Compton backscattering process and radiotherapy. Weeks KJ; Litvinenko VN; Madey JM Med Phys; 1997 Mar; 24(3):417-23. PubMed ID: 9089593 [TBL] [Abstract][Full Text] [Related]
12. On scattering effects for volume sources in low-energy photon spectrometry. Lépy MC; Brondeau L; Ferreux L; Pierre S Appl Radiat Isot; 2013 Nov; 81():71-5. PubMed ID: 23615361 [TBL] [Abstract][Full Text] [Related]
13. Doppler broadening effect on low-energy photon dose calculations using MCNP5 and PENELOPE. Ye SJ; Ove R; Naqvi SA Health Phys; 2006 Oct; 91(4):361-6. PubMed ID: 16966879 [TBL] [Abstract][Full Text] [Related]
14. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Floyd CE; Jaszczak RJ; Harris CC; Coleman RE Phys Med Biol; 1984 Oct; 29(10):1217-30. PubMed ID: 6333690 [TBL] [Abstract][Full Text] [Related]
15. Monte carlo simulation of the compton scattering technique applied to characterize diagnostic x-ray spectra. Gallardo S; Ródenas J; Verdú G Med Phys; 2004 Jul; 31(7):2082-90. PubMed ID: 15305461 [TBL] [Abstract][Full Text] [Related]
16. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Compton-scatter imaging with an analytical simulation method. Jones KC; Redler G; Templeton A; Bernard D; Turian JV; Chu JCH Phys Med Biol; 2018 Jan; 63(2):025016. PubMed ID: 29243663 [TBL] [Abstract][Full Text] [Related]
18. Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events. Liaparinos PF; Kandarakis IS Med Phys; 2011 Jul; 38(7):4440-50. PubMed ID: 21859045 [TBL] [Abstract][Full Text] [Related]
19. A comparison between default EGS4 and EGS4 with bound Compton cross sections when scattering occurs in bone and fat. Marianno CM; Higley KA; Palmer TS Health Phys; 2000 Jun; 78(6):716-20. PubMed ID: 10832933 [TBL] [Abstract][Full Text] [Related]
20. A didactic experiment showing the Compton scattering by means of a clinical gamma camera. Amato E; Auditore L; Campennì A; Minutoli F; Cucinotta M; Sindoni A; Baldari S Phys Med; 2017 Jun; 38():119-121. PubMed ID: 28610692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]