BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20682258)

  • 1. Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization.
    Kabaso D; Shlomovitz R; Auth T; Lew VL; Gov NS
    Biophys J; 2010 Aug; 99(3):808-16. PubMed ID: 20682258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic morphology and cytoskeletal protein changes during spontaneous inside-out vesiculation of red blood cell membranes.
    Tiffert T; Lew VL
    Pflugers Arch; 2014 Dec; 466(12):2279-88. PubMed ID: 24615169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of divalent cations with human red cell cytoskeletons.
    Beaven GH; Gratzer WB
    Biochim Biophys Acta; 1980 Jul; 600(1):140-9. PubMed ID: 7397165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface model of the human red blood cell simulating changes in membrane curvature under strain.
    Kuchel PW; Cox CD; Daners D; Shishmarev D; Galvosas P
    Sci Rep; 2021 Jul; 11(1):13712. PubMed ID: 34211012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrin and Other Membrane-Skeletal Components in Human Red Blood Cells of Different Age.
    Ciana A; Achilli C; Minetti G
    Cell Physiol Biochem; 2017; 42(3):1139-1152. PubMed ID: 28668958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesiculation of healthy and defective red blood cells.
    Li H; Lykotrafitis G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012715. PubMed ID: 26274210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale dynamics of actin filaments in the red blood cell membrane skeleton.
    Nowak RB; Alimohamadi H; Pestonjamasp K; Rangamani P; Fowler VM
    Mol Biol Cell; 2022 Mar; 33(3):ar28. PubMed ID: 35020457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.
    Gov NS; Safran SA
    Biophys J; 2005 Mar; 88(3):1859-74. PubMed ID: 15613626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding.
    Mesarec L; Drab M; Penič S; Kralj-Iglič V; Iglič A
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.
    Fowler VM
    Curr Top Membr; 2013; 72():39-88. PubMed ID: 24210427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium ions, drug action and the red cell membrane.
    Wiley JS; McCulloch KE
    Pharmacol Ther; 1982; 18(2):271-92. PubMed ID: 6296889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic simulations of membranes with cytoskeletal interactions.
    Lin LC; Brown FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011910. PubMed ID: 16090004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic remodeling of the human red blood cell membrane.
    Park Y; Best CA; Auth T; Gov NS; Safran SA; Popescu G; Suresh S; Feld MS
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1289-94. PubMed ID: 20080583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell type-specific association between two types of spectrin and two types of intermediate filaments.
    Langley RC; Cohen CM
    Cell Motil Cytoskeleton; 1987; 8(2):165-73. PubMed ID: 3690687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue.
    Pradhan D; Williamson P; Schlegel RA
    Biochemistry; 1991 Aug; 30(31):7754-8. PubMed ID: 1868052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the actin filament capping state in human erythrocyte ghost and cytoskeletal preparations.
    Kuhlman PA
    Biochem J; 2000 Jul; 349(Pt 1):105-11. PubMed ID: 10861217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of band 4.1 in the association of actin with erythrocyte membranes.
    Cohen CM; Foley SF
    Biochim Biophys Acta; 1982 Jun; 688(3):691-701. PubMed ID: 6889438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.