BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 20682353)

  • 1. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
    Thielscher A; Opitz A; Windhoff M
    Neuroimage; 2011 Jan; 54(1):234-43. PubMed ID: 20682353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.
    Opitz A; Windhoff M; Heidemann RM; Turner R; Thielscher A
    Neuroimage; 2011 Oct; 58(3):849-59. PubMed ID: 21749927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation.
    Toschi N; Welt T; Guerrisi M; Keck ME
    J Psychiatr Res; 2009 Jan; 43(3):255-64. PubMed ID: 18514227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex.
    Opitz A; Legon W; Rowlands A; Bickel WK; Paulus W; Tyler WJ
    Neuroimage; 2013 Nov; 81():253-264. PubMed ID: 23644000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time computation of the TMS-induced electric field in a realistic head model.
    Stenroos M; Koponen LM
    Neuroimage; 2019 Dec; 203():116159. PubMed ID: 31494248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of head and coil modeling for the calculation of induced electric field during transcranial magnetic stimulation.
    Tachas NJ; Samaras T
    Int J Psychophysiol; 2014 Jul; 93(1):167-71. PubMed ID: 23872490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold.
    Danner N; Julkunen P; Könönen M; Säisänen L; Nurkkala J; Karhu J
    J Neurosci Methods; 2008 Sep; 174(1):116-22. PubMed ID: 18662721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation.
    De Lucia M; Parker GJ; Embleton K; Newton JM; Walsh V
    Neuroimage; 2007 Jul; 36(4):1159-70. PubMed ID: 17524673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using increased structural detail of the cortex to improve the accuracy of modeling the effects of transcranial magnetic stimulation on neocortical activation.
    Chen M; Mogul DJ
    IEEE Trans Biomed Eng; 2010 May; 57(5):1216-26. PubMed ID: 20142156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study.
    Denslow S; Lomarev M; George MS; Bohning DE
    Biol Psychiatry; 2005 Apr; 57(7):752-60. PubMed ID: 15820232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved field localization in transcranial magnetic stimulation of the brain with the utilization of a conductive shield plate in the stimulator.
    Kim DH; Georghiou GE; Won C
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):720-5. PubMed ID: 16602579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial magnetic stimulation: a primer.
    Hallett M
    Neuron; 2007 Jul; 55(2):187-99. PubMed ID: 17640522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General indices to characterize the electrical response of the cerebral cortex to TMS.
    Casali AG; Casarotto S; Rosanova M; Mariotti M; Massimini M
    Neuroimage; 2010 Jan; 49(2):1459-68. PubMed ID: 19770048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of the electric field during transcranial direct current stimulation.
    Opitz A; Paulus W; Will S; Antunes A; Thielscher A
    Neuroimage; 2015 Apr; 109():140-50. PubMed ID: 25613437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.
    Bestmann S; Baudewig J; Siebner HR; Rothwell JC; Frahm J
    Eur J Neurosci; 2004 Apr; 19(7):1950-62. PubMed ID: 15078569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of the electric field evoked by transcranial electric stimulation during a craniotomy using the finite element method.
    Tomio R; Akiyama T; Horikoshi T; Ohira T; Yoshida K
    J Neurosci Methods; 2015 Dec; 256():157-67. PubMed ID: 26391774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of human visual system connectivity with transcranial electrical stimulation during functional magnetic resonance imaging.
    Brandt SA; Brocke J; Röricht S; Ploner CJ; Villringer A; Meyer BU
    Neuroimage; 2001 Aug; 14(2):366-75. PubMed ID: 11467910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models.
    Van Uitert R; Johnson C; Zhukov L
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2129-37. PubMed ID: 15605860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation.
    Krieg TD; Salinas FS; Narayana S; Fox PT; Mogul DJ
    J Neural Eng; 2015 Aug; 12(4):046014. PubMed ID: 26052136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.