These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 20683133)
1. In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys. Wang BL; Li L; Zheng YF Biomed Mater; 2010 Aug; 5(4):044102. PubMed ID: 20683133 [TBL] [Abstract][Full Text] [Related]
2. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Park YJ; Song YH; An JH; Song HJ; Anusavice KJ J Dent; 2013 Dec; 41(12):1251-8. PubMed ID: 24060476 [TBL] [Abstract][Full Text] [Related]
3. [Evaluation on biocompatibility of Ti-Fe-Mo-Mn-Nb-Zr alloy]. Yu S; Zhang X; Lao F; Zhang X; He Z; Liu Y; Liu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):200-4. PubMed ID: 15143539 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxicity analysis of a novel titanium alloy in vitro: adhesion, spreading, and proliferation of human gingival fibroblasts. Shimojo N; Kondo C; Yamashita K; Hoshino T; Hayakawa T Biomed Mater Eng; 2007; 17(2):127-35. PubMed ID: 17377221 [TBL] [Abstract][Full Text] [Related]
5. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. Ito A; Okazaki Y; Tateishi T; Ito Y J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys. McMahon RE; Ma J; Verkhoturov SV; Munoz-Pinto D; Karaman I; Rubitschek F; Maier HJ; Hahn MS Acta Biomater; 2012 Jul; 8(7):2863-70. PubMed ID: 22465573 [TBL] [Abstract][Full Text] [Related]
7. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility. Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946 [TBL] [Abstract][Full Text] [Related]
9. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys. da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721 [TBL] [Abstract][Full Text] [Related]
10. In vitro corrosion and biocompatibility of binary magnesium alloys. Gu X; Zheng Y; Cheng Y; Zhong S; Xi T Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636 [TBL] [Abstract][Full Text] [Related]
11. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration. Hu X; Wei Q; Li CY; Deng JY; Liu S; Zhang LY Biomed Mater; 2010 Oct; 5(5):054107. PubMed ID: 20876964 [TBL] [Abstract][Full Text] [Related]
12. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications. Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786 [TBL] [Abstract][Full Text] [Related]
13. A new look at biomedical Ti-based shape memory alloys. Biesiekierski A; Wang J; Gepreel MA; Wen C Acta Biomater; 2012 May; 8(5):1661-9. PubMed ID: 22326786 [TBL] [Abstract][Full Text] [Related]
14. Wear-resistant, hemocompatible Ti-Nb-Zr and Zr-Nb alloys to improve blood pump design and performance. Davidson JA; Daigle KP; Kovacs P Artif Organs; 1996 Jun; 20(6):513-22. PubMed ID: 8817948 [TBL] [Abstract][Full Text] [Related]
15. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys. Banerjee R; Nag S; Stechschulte J; Fraser HL Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114 [TBL] [Abstract][Full Text] [Related]
16. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992 [TBL] [Abstract][Full Text] [Related]
17. MRI-compatible Nb-60Ta-2Zr alloy used for vascular stents: haemocompatibility and its correlation with protein adsorption. Li XM; Li HZ; Wang SP; Huang HM; Huang HH; Ai HJ; Xu J Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():385-95. PubMed ID: 25063132 [TBL] [Abstract][Full Text] [Related]
18. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys. Gabriel SB; Nunes CA; Soares Gde A Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944 [TBL] [Abstract][Full Text] [Related]
19. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys. Ning C; Ding D; Dai K; Zhai W; Chen L Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527 [TBL] [Abstract][Full Text] [Related]
20. Nb-Ti-Zr alloys for orthopedic implants. Zhang T; Ou P; Ruan J; Yang H J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]