BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20683137)

  • 1. Growth mechanism of GaN nanowires: preferred nucleation site and effect of hydrogen.
    Lim SK; Crawford S; Gradecak S
    Nanotechnology; 2010 Aug; 21(34):345604. PubMed ID: 20683137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical elasticity of vapour-liquid-solid grown GaN nanowires.
    Chen Y; Stevenson I; Pouy R; Wang L; McIlroy DN; Pounds T; Grant Norton M; Eric Aston D
    Nanotechnology; 2007 Apr; 18(13):135708. PubMed ID: 21730393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using seed particle composition to control structural and optical properties of GaN nanowires.
    Zhou X; Chesin J; Crawford S; Gradečak S
    Nanotechnology; 2012 Jul; 23(28):285603. PubMed ID: 22717518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dislocation-induced nanoparticle decoration on a GaN nanowire.
    Yang B; Yuan F; Liu Q; Huang N; Qiu J; Staedler T; Liu B; Jiang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2790-6. PubMed ID: 25562572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires.
    Knelangen M; Consonni V; Trampert A; Riechert H
    Nanotechnology; 2010 Jun; 21(24):245705. PubMed ID: 20484796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO(2) layers.
    Sharma P; Anguita JV; Stolojan V; Henley SJ; Silva SR
    Nanotechnology; 2010 Jul; 21(29):295603. PubMed ID: 20585171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective-area vapour-liquid-solid growth of InP nanowires.
    Dalacu D; Kam A; Guy Austing D; Wu X; Lapointe J; Aers GC; Poole PJ
    Nanotechnology; 2009 Sep; 20(39):395602. PubMed ID: 19724116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanowires as semi-rigid substrates for growth of thick, In(x)Ga(1-x)N (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting.
    Pendyala C; Jasinski JB; Kim JH; Vendra VK; Lisenkov S; Menon M; Sunkara MK
    Nanoscale; 2012 Oct; 4(20):6269-75. PubMed ID: 22968333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of PbS nanowire pine trees driven by screw dislocations.
    Lau YK; Chernak DJ; Bierman MJ; Jin S
    J Am Chem Soc; 2009 Nov; 131(45):16461-71. PubMed ID: 19845339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled growth of catalyst-free GaN wires by metal-organic vapour phase epitaxy.
    Koester R; Hwang JS; Durand C; Dang Dle S; Eymery J
    Nanotechnology; 2010 Jan; 21(1):015602. PubMed ID: 19946171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy.
    Ikejiri K; Sato T; Yoshida H; Hiruma K; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2008 Jul; 19(26):265604. PubMed ID: 21828685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.
    Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P
    Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.
    Shen Y; Chen R; Yu X; Wang Q; Jungjohann KL; Dayeh SA; Wu T
    Nano Lett; 2016 Jul; 16(7):4158-65. PubMed ID: 27254592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates.
    Prabaswara A; Kim H; Min JW; Subedi RC; Anjum DH; Davaasuren B; Moore K; Conroy M; Mitra S; Roqan IS; Ng TK; Alshareef HN; Ooi BS
    ACS Nano; 2020 Feb; 14(2):2202-2211. PubMed ID: 31986010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth mechanism and properties of InGaN insertions in GaN nanowires.
    Tourbot G; Bougerol C; Glas F; Zagonel LF; Mahfoud Z; Meuret S; Gilet P; Kociak M; Gayral B; Daudin B
    Nanotechnology; 2012 Apr; 23(13):135703. PubMed ID: 22418250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergetic nanowire growth.
    Borgström MT; Immink G; Ketelaars B; Algra R; Bakkers EP
    Nat Nanotechnol; 2007 Sep; 2(9):541-4. PubMed ID: 18654364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydride vapour phase epitaxy growth of GaN nanowires.
    Seryogin G; Shalish I; Moberlychan W; Narayanamurti V
    Nanotechnology; 2005 Oct; 16(10):2342-5. PubMed ID: 20818016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.