These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 20683624)

  • 1. Physiological carbon dioxide, bicarbonate, and pH sensing.
    Tresguerres M; Buck J; Levin LR
    Pflugers Arch; 2010 Nov; 460(6):953-64. PubMed ID: 20683624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling.
    Buck J; Levin LR
    Sensors (Basel); 2011; 11(2):2112-28. PubMed ID: 21544217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of acid-base sensing by the kidney.
    Brown D; Wagner CA
    J Am Soc Nephrol; 2012 May; 23(5):774-80. PubMed ID: 22362904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing inorganic carbon: CO2 and HCO3-.
    Raven JA
    Biochem J; 2006 Jun; 396(2):e5-7. PubMed ID: 16703664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological roles of acid-base sensors.
    Levin LR; Buck J
    Annu Rev Physiol; 2015; 77():347-62. PubMed ID: 25340964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Na(+)HCO(3)(-) cotransporter NBC1, Na(+)/H(+) exchanger NHE1, and carbonic anhydrase in rabbit duodenal bicarbonate secretion.
    Jacob P; Christiani S; Rossmann H; Lamprecht G; Vieillard-Baron D; Müller R; Gregor M; Seidler U
    Gastroenterology; 2000 Aug; 119(2):406-19. PubMed ID: 10930376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO(2)/HCO(3)(-)-responsive soluble adenylyl cyclase as a putative metabolic sensor.
    Zippin JH; Levin LR; Buck J
    Trends Endocrinol Metab; 2001 Oct; 12(8):366-70. PubMed ID: 11551811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.
    Cooper CA; Whittamore JM; Wilson RW
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R870-6. PubMed ID: 20130227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial H+ transport and control of pH.
    Schlue WR; Dörner R; Rempe L; Riehl B
    Ann N Y Acad Sci; 1991; 633():287-305. PubMed ID: 1665031
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanism of augmented duodenal HCO(3)(-) secretion after elevation of luminal CO(2).
    Furukawa O; Hirokawa M; Zhang L; Takeuchi T; Bi LC; Guth PH; Engel E; Akiba Y; Kaunitz JD
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G557-63. PubMed ID: 15499081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicarbonate homeostasis in excitable tissues: role of AE3 Cl-/HCO3- exchanger and carbonic anhydrase XIV interaction.
    Casey JR; Sly WS; Shah GN; Alvarez BV
    Am J Physiol Cell Physiol; 2009 Nov; 297(5):C1091-102. PubMed ID: 19692653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal regulation of acid-base balance.
    Rector FC
    Aust N Z J Med; 1981; 11(Suppl 1):1-5. PubMed ID: 6789807
    [No Abstract]   [Full Text] [Related]  

  • 13. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes.
    McLean LA; Roscoe J; Jorgensen NK; Gorin FA; Cala PM
    Am J Physiol Cell Physiol; 2000 Apr; 278(4):C676-88. PubMed ID: 10751317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base transport by the renal proximal tubule.
    Skelton LA; Boron WF; Zhou Y
    J Nephrol; 2010; 23 Suppl 16(0 16):S4-18. PubMed ID: 21170887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed pH equilibration in blood during carbonic anhydrase inhibition.
    Crandall ED; Bidani A; Forster RE
    Adv Exp Med Biol; 1978; 99():243-54. PubMed ID: 29461
    [No Abstract]   [Full Text] [Related]  

  • 16. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate.
    Gallagher FA; Kettunen MI; Day SE; Hu DE; Ardenkjaer-Larsen JH; Zandt Ri; Jensen PR; Karlsson M; Golman K; Lerche MH; Brindle KM
    Nature; 2008 Jun; 453(7197):940-3. PubMed ID: 18509335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead.
    Poschenrieder C; Fernández JA; Rubio L; Pérez L; Terés J; Barceló J
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29751549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis.
    Wilson RW; Grosell M
    Biochim Biophys Acta; 2003 Dec; 1618(2):163-74. PubMed ID: 14729153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duodenal epithelial sensing of luminal acid: role of carbonic anhydrases.
    Sjöblom M
    Acta Physiol (Oxf); 2011 Jan; 201(1):85-95. PubMed ID: 20632999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.