These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20683852)

  • 21. Roadmap for implementation of quality by design (QbD) for biotechnology products.
    Rathore AS
    Trends Biotechnol; 2009 Sep; 27(9):546-53. PubMed ID: 19647883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying process tradeoffs in the operation of chromatographic sequences.
    Ngiam SH; Bracewell DG; Zhou Y; Titchener-Hooker NJ
    Biotechnol Prog; 2003; 19(4):1315-22. PubMed ID: 12892496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput process development for recombinant protein purification.
    Rege K; Pepsin M; Falcon B; Steele L; Heng M
    Biotechnol Bioeng; 2006 Mar; 93(4):618-30. PubMed ID: 16369981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production.
    Strauss DM; Cano T; Cai N; Delucchi H; Plancarte M; Coleman D; Blank GS; Chen Q; Yang B
    Biotechnol Prog; 2010; 26(3):750-5. PubMed ID: 20306523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pooling control in variable preparative chromatography processes.
    Westerberg K; Degerman M; Nilsson B
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):375-82. PubMed ID: 19513758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of phenyl sepharose ligand density on protein monomer/aggregate purification and separation using hydrophobic interaction chromatography.
    McCue JT; Engel P; Thömmes J
    J Chromatogr A; 2009 Feb; 1216(6):902-9. PubMed ID: 19100554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using partition designs to enhance purification process understanding.
    Pieracci J; Perry L; Conley L
    Biotechnol Bioeng; 2010 Dec; 107(5):814-24. PubMed ID: 20632374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of raw materials in biopharmaceutical manufacturing: risk analysis and fingerprinting.
    Rathore AS; Kumar D; Kateja N
    Curr Opin Biotechnol; 2018 Oct; 53():99-105. PubMed ID: 29306677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current insights on protein behaviour in hydrophobic interaction chromatography.
    Lienqueo ME; Mahn A; Salgado JC; Asenjo JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):53-68. PubMed ID: 17141587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of native proteins of Escherichia coli BL-21 that display affinity towards Immobilized Metal Affinity Chromatography and Hydrophobic Interaction Chromatography Matrices.
    Tiwari N; Woods L; Haley R; Kight A; Goforth R; Clark K; Ataai M; Henry R; Beitle R
    Protein Expr Purif; 2010 Apr; 70(2):191-5. PubMed ID: 19887109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Process analytical technology (PAT) for biopharmaceutical products: Part I. concepts and applications.
    Read EK; Park JT; Shah RB; Riley BS; Brorson KA; Rathore AS
    Biotechnol Bioeng; 2010 Feb; 105(2):276-84. PubMed ID: 19731252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput process development for biopharmaceutical drug substances.
    Bhambure R; Kumar K; Rathore AS
    Trends Biotechnol; 2011 Mar; 29(3):127-35. PubMed ID: 21255855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use and application of hydrophobic interaction chromatography for protein purification.
    McCue JT
    Methods Enzymol; 2014; 541():51-65. PubMed ID: 24674062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification of cell culture-derived modified vaccinia ankara virus by pseudo-affinity membrane adsorbers and hydrophobic interaction chromatography.
    Wolff MW; Siewert C; Hansen SP; Faber R; Reichl U
    Biotechnol Bioeng; 2010 Oct; 107(2):312-20. PubMed ID: 20506129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Process analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and applications.
    Read EK; Shah RB; Riley BS; Park JT; Brorson KA; Rathore AS
    Biotechnol Bioeng; 2010 Feb; 105(2):285-95. PubMed ID: 19731253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decision-support software for the industrial-scale chromatographic purification of antibodies.
    Chhatre S; Thillaivinayagalingam P; Francis R; Titchener-Hooker NJ; Newcombe AR; Keshavarz-Moore E
    Biotechnol Prog; 2007; 23(4):888-94. PubMed ID: 17630695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.
    Bhambure R; Rathore AS
    Biotechnol Prog; 2013; 29(2):403-14. PubMed ID: 23424083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrophobic interaction chromatography: harnessing multivalent protein-surface interactions for purification procedures.
    Jennissen HP
    Methods Mol Biol; 2005; 305():81-99. PubMed ID: 15943009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theory and use of hydrophobic interaction chromatography in protein purification applications.
    McCue JT
    Methods Enzymol; 2009; 463():405-14. PubMed ID: 19892185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.