These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20684030)

  • 1. Numerical assessment on the effective mechanical stimuli for matrix-associated metabolism in chondrocyte-seeded constructs.
    Tasci A; Ferguson SJ; Büchler P
    J Tissue Eng Regen Med; 2011 Mar; 5(3):210-9. PubMed ID: 20684030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading.
    Mauck RL; Byers BA; Yuan X; Tuan RS
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):113-25. PubMed ID: 16691412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses.
    Connelly JT; Vanderploeg EJ; Levenston ME
    Biorheology; 2004; 41(3-4):377-87. PubMed ID: 15299270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen synthesis of articular cartilage explants in response to frequency of cyclic mechanical loading.
    Wolf A; Ackermann B; Steinmeyer J
    Cell Tissue Res; 2007 Jan; 327(1):155-66. PubMed ID: 16941123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of mechanical loading on isolated chondrocytes seeded in agarose constructs.
    Lee DA; Noguchi T; Frean SP; Lees P; Bader DL
    Biorheology; 2000; 37(1-2):149-61. PubMed ID: 10912187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of cell-associated matrix in the development of free-swelling and dynamically loaded chondrocyte-seeded agarose gels.
    Kelly TA; Wang CC; Mauck RL; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):223-37. PubMed ID: 15299255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes.
    Jeong CG; Zhang H; Hollister SJ
    Acta Biomater; 2011 Feb; 7(2):505-14. PubMed ID: 20807597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part C Methods; 2014 Feb; 20(2):104-15. PubMed ID: 23679046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of TGF-beta1 and beta-estradiol on glycosaminoglycan and type II collagen distribution in articular chondrocyte cultures.
    Ab-Rahim S; Selvaratnam L; Kamarul T
    Cell Biol Int; 2008 Jul; 32(7):841-7. PubMed ID: 18479947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs.
    Wernike E; Li Z; Alini M; Grad S
    Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure.
    Carver SE; Heath CA
    Biotechnol Bioeng; 1999 Jan; 62(2):166-74. PubMed ID: 10099526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold architecture determines chondrocyte response to externally applied dynamic compression.
    Mesallati T; Buckley CT; Nagel T; Kelly DJ
    Biomech Model Mechanobiol; 2013 Oct; 12(5):889-99. PubMed ID: 23160843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional tissue engineering of chondral and osteochondral constructs.
    Lima EG; Mauck RL; Han SH; Park S; Ng KW; Ateshian GA; Hung CT
    Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
    Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ
    J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.