These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20684524)

  • 21. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover.
    DuBois JL; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-ray snapshots of quinone cofactor biogenesis in bacterial copper amine oxidase.
    Kim M; Okajima T; Kishishita S; Yoshimura M; Kawamori A; Tanizawa K; Yamaguchi H
    Nat Struct Biol; 2002 Aug; 9(8):591-6. PubMed ID: 12134140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper amine oxidase: a novel use for a tyrosine.
    Fontecave M; Eklund H
    Structure; 1995 Nov; 3(11):1127-9. PubMed ID: 8591022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases.
    Green EL; Nakamura N; Dooley DM; Klinman JP; Sanders-Loehr J
    Biochemistry; 2002 Jan; 41(2):687-96. PubMed ID: 11781110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor.
    Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K
    Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli.
    Gaule TG; Smith MA; Tych KM; Pirrat P; Trinh CH; Pearson AR; Knowles PF; McPherson MJ
    Biochemistry; 2018 Sep; 57(36):5301-5314. PubMed ID: 30110143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
    Plastino J; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone.
    Wilce MC; Dooley DM; Freeman HC; Guss JM; Matsunami H; McIntire WS; Ruggiero CE; Tanizawa K; Yamaguchi H
    Biochemistry; 1997 Dec; 36(51):16116-33. PubMed ID: 9405045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution.
    Parsons MR; Convery MA; Wilmot CM; Yadav KD; Blakeley V; Corner AS; Phillips SE; McPherson MJ; Knowles PF
    Structure; 1995 Nov; 3(11):1171-84. PubMed ID: 8591028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective.
    Brazeau BJ; Johnson BJ; Wilmot CM
    Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast.
    Schwartz B; Olgin AK; Klinman JP
    Biochemistry; 2001 Mar; 40(9):2954-63. PubMed ID: 11258907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of a self-catalytic mechanism of 2,4,5-trihydroxyphenylalanine quinone biogenesis in yeast copper amine oxidase.
    Cai D; Klinman JP
    J Biol Chem; 1994 Dec; 269(51):32039-42. PubMed ID: 7798196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover.
    Dubois JL; Klinman JP
    Arch Biochem Biophys; 2005 Jan; 433(1):255-65. PubMed ID: 15581581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis .
    McGrath AP; Caradoc-Davies T; Collyer CA; Guss JM
    Biochemistry; 2010 Sep; 49(38):8316-24. PubMed ID: 20722416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis.
    Matsuzaki R; Tanizawa K
    Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution.
    Kumar V; Dooley DM; Freeman HC; Guss JM; Harvey I; McGuirl MA; Wilce MC; Zubak VM
    Structure; 1996 Aug; 4(8):943-55. PubMed ID: 8805580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase.
    Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K
    Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
    Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ
    Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of the topaquinone cofactor in copper amine oxidases--evidence from model studies.
    Rinaldi AC; Porcu CM; Oliva S; Curreli N; Rescigno A; Sollai F; Rinaldi A; Finazzi-Agró A; Sanjust E
    Eur J Biochem; 1998 Jan; 251(1-2):91-7. PubMed ID: 9492272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.