These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 20684774)

  • 61. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses.
    Buck PM; Kumar S; Singh SK
    PLoS Comput Biol; 2013; 9(10):e1003291. PubMed ID: 24146608
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DINAMO: a coupled sequence alignment editor/molecular graphics tool for interactive homology modeling of proteins.
    Hansen M; Bentz J; Baucom A; Gregoret L
    Pac Symp Biocomput; 1998; ():106-17. PubMed ID: 9697175
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design.
    Ferruz N; Lobos F; Lemm D; Toledo-Patino S; Farías-Rico JA; Schmidt S; Höcker B
    J Mol Biol; 2020 Jun; 432(13):3898-3914. PubMed ID: 32330481
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of insertions and deletions on wirings in protein-protein interaction networks: a large-scale study.
    Hormozdiari F; Salari R; Hsing M; Schönhuth A; Chan SK; Sahinalp SC; Cherkasov A
    J Comput Biol; 2009 Feb; 16(2):159-67. PubMed ID: 19193143
    [TBL] [Abstract][Full Text] [Related]  

  • 66. SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments.
    Ajawatanawong P; Atkinson GC; Watson-Haigh NS; Mackenzie B; Baldauf SL
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W340-7. PubMed ID: 22693213
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Alternative splicing and protein structure evolution.
    Birzele F; Csaba G; Zimmer R
    Nucleic Acids Res; 2008 Feb; 36(2):550-8. PubMed ID: 18055499
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins.
    Matsuoka M; Kikuchi T
    BMC Struct Biol; 2014 May; 14():15. PubMed ID: 24884463
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Genome and gene alterations by insertions and deletions in the evolution of human and chimpanzee chromosome 22.
    Volfovsky N; Oleksyk TK; Cruz KC; Truelove AL; Stephens RM; Smith MW
    BMC Genomics; 2009 Jan; 10():51. PubMed ID: 19171065
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identifying sequence-structure pairs undetected by sequence alignments.
    Miyazawa S; Jernigan RL
    Protein Eng; 2000 Jul; 13(7):459-75. PubMed ID: 10906342
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fold change in evolution of protein structures.
    Grishin NV
    J Struct Biol; 2001; 134(2-3):167-85. PubMed ID: 11551177
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Asymmetric protein design from conserved supersecondary structures.
    ElGamacy M; Coles M; Lupas A
    J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins.
    Rockah-Shmuel L; Tóth-Petróczy Á; Sela A; Wurtzel O; Sorek R; Tawfik DS
    PLoS Genet; 2013 Oct; 9(10):e1003882. PubMed ID: 24204297
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A comprehensive study of small non-frameshift insertions/deletions in proteins and prediction of their phenotypic effects by a machine learning method (KD4i).
    Bermejo-Das-Neves C; Nguyen HN; Poch O; Thompson JD
    BMC Bioinformatics; 2014 Apr; 15():111. PubMed ID: 24742296
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural position correlation analysis (SPCA) for protein family.
    Du QS; Meng JZ; Wang CH; Long SY; Huang RB
    PLoS One; 2011; 6(12):e28206. PubMed ID: 22163002
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Protein structure prediction enhanced with evolutionary diversity: SPEED.
    DeBartolo J; Hocky G; Wilde M; Xu J; Freed KF; Sosnick TR
    Protein Sci; 2010 Mar; 19(3):520-34. PubMed ID: 20066664
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predicting the Effect of Mutations on Protein Folding and Protein-Protein Interactions.
    Strokach A; Corbi-Verge C; Teyra J; Kim PM
    Methods Mol Biol; 2019; 1851():1-17. PubMed ID: 30298389
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sibe: a computation tool to apply protein sequence statistics to predict folding and design in silico.
    Cheung NJ; Yu W
    BMC Bioinformatics; 2019 Sep; 20(1):455. PubMed ID: 31492097
    [TBL] [Abstract][Full Text] [Related]  

  • 80. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.