BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20685653)

  • 41. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts.
    Di Leonardo A; Linke SP; Clarkin K; Wahl GM
    Genes Dev; 1994 Nov; 8(21):2540-51. PubMed ID: 7958916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage.
    Rathmell WK; Kaufmann WK; Hurt JC; Byrd LL; Chu G
    Cancer Res; 1997 Jan; 57(1):68-74. PubMed ID: 8988043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ARF differentially modulates apoptosis induced by E2F1 and Myc.
    Russell JL; Powers JT; Rounbehler RJ; Rogers PM; Conti CJ; Johnson DG
    Mol Cell Biol; 2002 Mar; 22(5):1360-8. PubMed ID: 11839803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. E2F is involved in radioresistance of carbon ion induced apoptosis via Bax/caspase 3 signal pathway in human hepatoma cell.
    Xie Y; Si J; Wang YP; Li HY; Di CX; Yan JF; Ye YC; Zhang YS; Zhang H
    J Cell Physiol; 2018 Feb; 233(2):1312-1320. PubMed ID: 28500630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation.
    Gurtner A; Fuschi P; Martelli F; Manni I; Artuso S; Simonte G; Ambrosino V; Antonini A; Folgiero V; Falcioni R; Sacchi A; Piaggio G
    Cancer Res; 2010 Dec; 70(23):9711-20. PubMed ID: 20952509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis.
    Rogoff HA; Pickering MT; Debatis ME; Jones S; Kowalik TF
    Mol Cell Biol; 2002 Aug; 22(15):5308-18. PubMed ID: 12101227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. E2F1 and p53 transcription factors as accessory factors for nucleotide excision repair.
    Vélez-Cruz R; Johnson DG
    Int J Mol Sci; 2012 Oct; 13(10):13554-68. PubMed ID: 23202967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The E2F family and the role of E2F1 in apoptosis.
    Wu Z; Zheng S; Yu Q
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2389-97. PubMed ID: 19539777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis.
    Kowalik TF; DeGregori J; Schwarz JK; Nevins JR
    J Virol; 1995 Apr; 69(4):2491-500. PubMed ID: 7884898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. E2F1 and E2F2 prevent replicative stress and subsequent p53-dependent organ involution.
    Iglesias-Ara A; Zenarruzabeitia O; Buelta L; Merino J; Zubiaga AM
    Cell Death Differ; 2015 Oct; 22(10):1577-89. PubMed ID: 25656653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Overexpression of E2F1 in glioma-derived cell lines induces a p53-independent apoptosis that is further enhanced by ionizing radiation.
    Shu HK; Julin CM; Furman F; Yount GL; Haas-Kogan D; Israel MA
    Neuro Oncol; 2000 Jan; 2(1):16-21. PubMed ID: 11302249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle.
    Pfeuty B; David-Pfeuty T; Kaneko K
    Cell Cycle; 2008 Oct; 7(20):3246-57. PubMed ID: 18843205
    [TBL] [Abstract][Full Text] [Related]  

  • 53. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.
    Ye W; Blain SW
    Brain; 2010 Aug; 133(Pt 8):2295-312. PubMed ID: 20639548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis.
    Lizé M; Pilarski S; Dobbelstein M
    Cell Death Differ; 2010 Mar; 17(3):452-8. PubMed ID: 19960022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distinct p53-mediated G1/S checkpoint responses in two NIH3T3 subclone cells following treatment with DNA-damaging agents.
    Huang TS; Kuo ML; Shew JY; Chou YW; Yang WK
    Oncogene; 1996 Aug; 13(3):625-32. PubMed ID: 8760304
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth.
    Pandolfi S; Montagnani V; Lapucci A; Stecca B
    Cell Death Differ; 2015 Dec; 22(12):2006-19. PubMed ID: 26024388
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1.
    Rogoff HA; Kowalik TF
    Cell Cycle; 2004 Jul; 3(7):845-6. PubMed ID: 15190206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mdm2 inhibition of p53 induces E2F1 transactivation via p21.
    Wunderlich M; Berberich SJ
    Oncogene; 2002 Jun; 21(28):4414-21. PubMed ID: 12080472
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apoptosis in erythroid progenitors deprived of erythropoietin occurs during the G1 and S phases of the cell cycle without growth arrest or stabilization of wild-type p53.
    Kelley LL; Green WF; Hicks GG; Bondurant MC; Koury MJ; Ruley HE
    Mol Cell Biol; 1994 Jun; 14(6):4183-92. PubMed ID: 8196656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of E2F1-induced apoptosis in primary vascular smooth muscle cells.
    Stanelle J; Stiewe T; Rödicker F; Köhler K; Theseling C; Pützer BM
    Cardiovasc Res; 2003 Aug; 59(2):512-9. PubMed ID: 12909334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.