BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20685691)

  • 1. Information processing by biochemical networks: a dynamic approach.
    Bowsher CG
    J R Soc Interface; 2011 Feb; 8(55):186-200. PubMed ID: 20685691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.
    Bowsher CG
    Bioinformatics; 2011 Feb; 27(4):584-6. PubMed ID: 21159624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying sources of variation and the flow of information in biochemical networks.
    Bowsher CG; Swain PS
    Proc Natl Acad Sci U S A; 2012 May; 109(20):E1320-8. PubMed ID: 22529351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal integration and information transfer in an allosterically regulated network.
    Shockley EM; Rouzer CA; Marnett LJ; Deeds EJ; Lopez CF
    NPJ Syst Biol Appl; 2019; 5():23. PubMed ID: 31341635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphical reduction of reaction networks by linear elimination of species.
    Sáez M; Wiuf C; Feliu E
    J Math Biol; 2017 Jan; 74(1-2):195-237. PubMed ID: 27221101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing the structural influence matrix for biological systems.
    Giordano G; Cuba Samaniego C; Franco E; Blanchini F
    J Math Biol; 2016 Jun; 72(7):1927-58. PubMed ID: 26395779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic and structural constraints in signal propagation by regulatory networks.
    Estrada J; Guantes R
    Mol Biosyst; 2013 Feb; 9(2):268-84. PubMed ID: 23224050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information-theoretic analysis of multivariate single-cell signaling responses.
    Jetka T; Nienałtowski K; Winarski T; Błoński S; Komorowski M
    PLoS Comput Biol; 2019 Jul; 15(7):e1007132. PubMed ID: 31299056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information theory and signal transduction systems: from molecular information processing to network inference.
    Mc Mahon SS; Sim A; Filippi S; Johnson R; Liepe J; Smith D; Stumpf MP
    Semin Cell Dev Biol; 2014 Nov; 35():98-108. PubMed ID: 24953199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexity reduction preserving dynamical behavior of biochemical networks.
    Apri M; de Gee M; Molenaar J
    J Theor Biol; 2012 Jul; 304():16-26. PubMed ID: 22465110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying dynamical bottlenecks of stochastic transitions in biochemical networks.
    Govern CC; Yang M; Chakraborty AK
    Phys Rev Lett; 2012 Feb; 108(5):058102. PubMed ID: 22400965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters.
    Rhee A; Cheong R; Levchenko A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17330-5. PubMed ID: 25404303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global parameter identification of stochastic reaction networks from single trajectories.
    Müller CL; Ramaswamy R; Sbalzarini IF
    Adv Exp Med Biol; 2012; 736():477-98. PubMed ID: 22161347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust simplifications of multiscale biochemical networks.
    Radulescu O; Gorban AN; Zinovyev A; Lilienbaum A
    BMC Syst Biol; 2008 Oct; 2():86. PubMed ID: 18854041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.
    Saez-Rodriguez J; Gayer S; Ginkel M; Gilles ED
    Bioinformatics; 2008 Aug; 24(16):i213-9. PubMed ID: 18689828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pSSAlib: The partial-propensity stochastic chemical network simulator.
    Ostrenko O; Incardona P; Ramaswamy R; Brusch L; Sbalzarini IF
    PLoS Comput Biol; 2017 Dec; 13(12):e1005865. PubMed ID: 29206229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.
    Morshed M; Ingalls B; Ilie S
    Biosystems; 2017 Jan; 151():43-52. PubMed ID: 27914944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural approach for finding functional modules from large biological networks.
    Mete M; Tang F; Xu X; Yuruk N
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S19. PubMed ID: 18793464
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.