These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 20685730)

  • 21. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism.
    Tanaka K; Asami T; Yoshida S; Nakamura Y; Matsuo T; Okamoto S
    Plant Physiol; 2005 Jun; 138(2):1117-25. PubMed ID: 15908602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating hormones into the floral-transition pathway of Arabidopsis thaliana.
    Davis SJ
    Plant Cell Environ; 2009 Sep; 32(9):1201-10. PubMed ID: 19302104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brassinosteroid-regulated gene expression.
    Müssig C; Fischer S; Altmann T
    Plant Physiol; 2002 Jul; 129(3):1241-51. PubMed ID: 12114578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control.
    Kemmerling B; Schwedt A; Rodriguez P; Mazzotta S; Frank M; Qamar SA; Mengiste T; Betsuyaku S; Parker JE; Müssig C; Thomma BP; Albrecht C; de Vries SC; Hirt H; Nürnberger T
    Curr Biol; 2007 Jul; 17(13):1116-22. PubMed ID: 17583510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids.
    Noguchi T; Fujioka S; Choe S; Takatsuto S; Yoshida S; Yuan H; Feldmann KA; Tax FE
    Plant Physiol; 1999 Nov; 121(3):743-52. PubMed ID: 10557222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation.
    Yamamoto R; Fujioka S; Iwamoto K; Demura T; Takatsuto S; Yoshida S; Fukuda H
    Plant Cell Physiol; 2007 Jan; 48(1):74-83. PubMed ID: 17132633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.
    Song LI; Zhou XY; Li LI; Xue LJ; Yang XI; Xue HW
    Mol Plant; 2009 Jul; 2(4):755-772. PubMed ID: 19825654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis.
    Goda H; Shimada Y; Asami T; Fujioka S; Yoshida S
    Plant Physiol; 2002 Nov; 130(3):1319-34. PubMed ID: 12427998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CESTA, a positive regulator of brassinosteroid biosynthesis.
    Poppenberger B; Rozhon W; Khan M; Husar S; Adam G; Luschnig C; Fujioka S; Sieberer T
    EMBO J; 2011 Mar; 30(6):1149-61. PubMed ID: 21336258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phloem transport of flowering signals.
    Giakountis A; Coupland G
    Curr Opin Plant Biol; 2008 Dec; 11(6):687-94. PubMed ID: 18977685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brassinosteroid signaling in plants.
    Müssig C; Altmann T
    Trends Endocrinol Metab; 2001 Nov; 12(9):398-402. PubMed ID: 11595541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular analysis of brassinosteroid action.
    Müssig C; Lisso J; Coll-Garcia D; Altmann T
    Plant Biol (Stuttg); 2006 May; 8(3):291-6. PubMed ID: 16807820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance.
    Divi UK; Krishna P
    N Biotechnol; 2009 Oct; 26(3-4):131-6. PubMed ID: 19631770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice.
    Tong H; Jin Y; Liu W; Li F; Fang J; Yin Y; Qian Q; Zhu L; Chu C
    Plant J; 2009 Jun; 58(5):803-16. PubMed ID: 19220793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids.
    Poppenberger B; Fujioka S; Soeno K; George GL; Vaistij FE; Hiranuma S; Seto H; Takatsuto S; Adam G; Yoshida S; Bowles D
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15253-8. PubMed ID: 16214889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis.
    Bancoş S; Nomura T; Sato T; Molnár G; Bishop GJ; Koncz C; Yokota T; Nagy F; Szekeres M
    Plant Physiol; 2002 Sep; 130(1):504-13. PubMed ID: 12226529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of brassinosteroid biosynthesis and inactivation.
    Zhao B; Li J
    J Integr Plant Biol; 2012 Oct; 54(10):746-59. PubMed ID: 22963251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.
    Caño-Delgado A; Yin Y; Yu C; Vafeados D; Mora-García S; Cheng JC; Nam KH; Li J; Chory J
    Development; 2004 Nov; 131(21):5341-51. PubMed ID: 15486337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of ascorbic acid in the control of flowering time and the onset of senescence.
    Barth C; De Tullio M; Conklin PL
    J Exp Bot; 2006; 57(8):1657-65. PubMed ID: 16698812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis brassinosteroid signaling pathway.
    Belkhadir Y; Wang X; Chory J
    Sci STKE; 2006 Dec; 2006(364):cm5. PubMed ID: 17148786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.