BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 20685972)

  • 1. SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission.
    Guzman RE; Schwarz YN; Rettig J; Bruns D
    J Neurosci; 2010 Aug; 30(31):10272-81. PubMed ID: 20685972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
    Deák F; Shin OH; Kavalali ET; Südhof TC
    J Neurosci; 2006 Jun; 26(25):6668-76. PubMed ID: 16793874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptobrevin-2 dependent regulation of single synaptic vesicle endocytosis.
    Chanaday NL; Kavalali ET
    Mol Biol Cell; 2021 Sep; 32(19):1818-1823. PubMed ID: 34191540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
    Chiang CW; Chang CW; Jackson MB
    J Neurosci; 2018 Aug; 38(32):7179-7191. PubMed ID: 30012692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core membrane fusion complex governs the probability of synaptic vesicle fusion but not transmitter release kinetics.
    Finley MF; Patel SM; Madison DV; Scheller RH
    J Neurosci; 2002 Feb; 22(4):1266-72. PubMed ID: 11850454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VAMP4 Maintains a Ca
    Lin PY; Chanaday NL; Horvath PM; Ramirez DMO; Monteggia LM; Kavalali ET
    J Neurosci; 2020 Jul; 40(28):5389-5401. PubMed ID: 32532887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming.
    Burgalossi A; Jung S; Meyer G; Jockusch WJ; Jahn O; Taschenberger H; O'Connor VM; Nishiki T; Takahashi M; Brose N; Rhee JS
    Neuron; 2010 Nov; 68(3):473-87. PubMed ID: 21040848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release.
    Zhou P; Bacaj T; Yang X; Pang ZP; Südhof TC
    Neuron; 2013 Oct; 80(2):470-83. PubMed ID: 24120845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity.
    Jorquera RA; Huntwork-Rodriguez S; Akbergenova Y; Cho RW; Littleton JT
    J Neurosci; 2012 Dec; 32(50):18234-45. PubMed ID: 23238737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission.
    Raingo J; Khvotchev M; Liu P; Darios F; Li YC; Ramirez DM; Adachi M; Lemieux P; Toth K; Davletov B; Kavalali ET
    Nat Neurosci; 2012 Mar; 15(5):738-45. PubMed ID: 22406549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses.
    Sinha R; Ahmed S; Jahn R; Klingauf J
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14318-23. PubMed ID: 21844343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones.
    Imig C; Min SW; Krinner S; Arancillo M; Rosenmund C; Südhof TC; Rhee J; Brose N; Cooper BH
    Neuron; 2014 Oct; 84(2):416-31. PubMed ID: 25374362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission.
    Ramirez DM; Khvotchev M; Trauterman B; Kavalali ET
    Neuron; 2012 Jan; 73(1):121-34. PubMed ID: 22243751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.
    Zimmermann J; Trimbuch T; Rosenmund C
    J Neurophysiol; 2014 Sep; 112(6):1559-65. PubMed ID: 24944211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.
    Sara Y; Virmani T; Deák F; Liu X; Kavalali ET
    Neuron; 2005 Feb; 45(4):563-73. PubMed ID: 15721242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses.
    Gazit N; Vertkin I; Shapira I; Helm M; Slomowitz E; Sheiba M; Mor Y; Rizzoli S; Slutsky I
    Neuron; 2016 Feb; 89(3):583-97. PubMed ID: 26804996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A heterogeneous "resting" pool of synaptic vesicles that is dynamically interchanged across boutons in mammalian CNS synapses.
    Fernandez-Alfonso T; Ryan TA
    Brain Cell Biol; 2008 Aug; 36(1-4):87-100. PubMed ID: 18941900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Functions of Syntaxin-1 in Neuronal Maintenance, Synaptic Vesicle Docking, and Fusion in Mouse Neurons.
    Vardar G; Chang S; Arancillo M; Wu YJ; Trimbuch T; Rosenmund C
    J Neurosci; 2016 Jul; 36(30):7911-24. PubMed ID: 27466336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion pore flux controls the rise-times of quantal synaptic responses.
    Jackson MB; Chiang CW; Cheng J
    J Gen Physiol; 2024 Aug; 156(8):. PubMed ID: 38860965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine phosphorylation of Munc18-1 inhibits synaptic transmission by preventing SNARE assembly.
    Meijer M; Dörr B; Lammertse HC; Blithikioti C; van Weering JR; Toonen RF; Söllner TH; Verhage M
    EMBO J; 2018 Jan; 37(2):300-320. PubMed ID: 29150433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.